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Abstract This paper investigates the challenging issue of
enabling fast brain-computer interaction to construct a mental
speller. Exploiting visual evoked potentials as communication
carriers, an online paradigm called “imitating-human-natural-
reading” is realized. In this online paradigm, single-trial
estimation with the intrinsically real-time feature should be used
instead of grand average that is traditionally used in the cognitive
or clinical experiments. By the use of several montages of
component features from four channels with parameter optimi-
zation, we explored the support vector machines-based single-
trial estimation of evoked potentials. The results on a human-
subject show the advantages of the inducing paradigm used in
our mental speller with a high classification rate.

Keywords Body area networks . Brain-computer interface
(BCI) . Evoked potentials . Feature selection . Single-trial
estimation . Support vector machine (SVM)

Introduction

Advances in wireless communication technologies, along
with the availability of wearable and low-cost bio-sensors

open the possibility to realize human’s expectation flexibly
through a body language user interface. For example,
Digital-Being exploits body area networks [1] to enable
dancers to express their feelings and moods by dynamically
and automatically adjusting music and lighting in a dance
environment to reflect the dancers’ arousal states while
presenting their gestures and body movements [2].

If BAN technology can be incorporated with Brain-
Computer Interfaces (BCI) technology, the information
from the human neural system can directly tell other
systems to have the correct and desired actions with the
occurrence of different events to an object. The operation of
BCI depends on the users’ intentions, which are encoded in
electroencephalogram (EEG) signals; and then the system
detects these features and converts them into control signals
for export. At present, scalp electrodes are widely used for
recording EEG signals generated by brain activities, so as
to realize the communication with the outside, this is a non-
destructive technology. However, the signals become very
fuzzy after attenuation and aliasing through skull and skin,
and the signals are often contaminated by Electrooculogra-
phy(EOG), myoelectricity, and external electromagnetic
fields. Thus, it is very difficult to extract characteristic
signals. Furthermore, the effective multi-job superimposed
averaging method in traditional neurophysiological experi-
ments is useless when confronted with the BCI environ-
ment, which requires real-time interaction.

In recent years, as studies of BCI gradually develop, in
order to overcome the bottleneck of brain signal interpre-
tations, and improve man-machine communication speed,
the single-trial estimation of characteristic signals has
become an objective of intense interest [3, 4], and some
scholars have conducted fruitful works [5, 6]. Researchers
have proposed the single-trial estimation of multiple
features according to the features of communication carrier
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signals of different brain-computer interface systems, such
as public spatial subspace decomposition and the Fisher
discriminate, isolated component analysis and subspace
projections, Support Vector Machine (SVM), etc [4–7].
These methods have obtained good effects in BCI applica-
tions. However, most of them use the data of eight even
tens of channels to form the characteristic quantity of a
sorting algorithm; thus, signal processing was complicated
and the increased number of channels restricted the
promotion of BCI, which was a disadvantageous for
practical applications.

In order to further increase communication speed and
solve the visual fatigue caused by stimulus signal
flickering [8, 9, 10], this paper exploits a paradigm called
“imitating natural reading” to generate evoked potential to
construct a brain-controlled spelling device based on
existing works [11]. Due to the effective inhibitions of
exogenous reactions, the signal-to-noise ratio of evoked
potential component in EEG signal was enhanced greatly,
which helps to improve the recognition accuracy of
characteristic signal. SVM is a machine learning method
based on kernel functions, which is better than traditional
artificial neural networks and has been extensively used in
various pattern classifications for its solid mathematical
foundation and good generalization ability. As the exper-
iment for researching signal separability, this paper uses
the ν-SVM algorithm and different feature combinations
of channels for pattern classifications of both target and
non-target stimulus signals. The results on a human-
subject show a perfect classification rate of 98.9%, and
verify the advantages of the inducing paradigm used in
our mental speller.

The rest of the paper is organized as follows.
Section Related works presents related work. We describe
the architecture and design issues of the proposed system
in Section System architecture and Section System imple-
mentation. In Section Experimental results presents the
experiment results. Finally, we concludes our paper in
Section Conclusions.

Related works

This paper is closely related to brain-computer interface and
support vector machine classifier. In the following discussion,
we briefly review the existing works and background
knowledge.

Brain-computer interface

To communicate with the external world, and even to
control ambient environments using the conceptual work
signals of brain is the dream of all humans of all ages.

The brain-computer interface (BCI) technology is a
scientific method to realize this dream. It is a brain-
computer (computer or other devices) communication
system independent of normal output channels of the
brain (i.e. peripheral nerve and muscle) [10]. The input of
BCI is typically based on electroencephalogram (EEG)
signals, which can be collected by an EEG sensor. The
EEG sensor measures the electrical activity within the
brain by attaching small electrodes to the human’s scalp at
multiple locations. Then, information of the brain’s
electrical activities sensed by the electrodes is forwarded
to an amplifier for producing a pattern of tracings.
Synchronous electrical activities in different brain regions
are generally assumed to imply functional relationships
between these regions. In a hospital, the patient may be
asked to breathe deeply or to look at a flashing light
during the recording of EEG [12].

The latest technology and computer innovation might
allow a system to not only detect body language [13] but
also respond to it. Through the integration of BCI with
other technologies, such as BAN [14, 15], video surveil-
lance and sensor networks, etc., wearable and wireless
human-machine interface can be implemented [16]. Then,
more and more automatic applications can come true in
future.

Support vector machine classifier

This section focuses on some background about SVM
method, which is based on the statistical learning theory,
and seeks the best compromise between complexity (i.e.
learning accuracy of special training samples) and learning
ability (i.e. ability to identify arbitrary samples faultlessly)
of the models, according to limited sampling information,
so as to obtain the best generalized ability. Its basic idea is
as follows, non-linear separable patterns of the input space
was converted into linear separable patterns in high
dimensional feature space through non-linear function
images, and then, the optimal classification face was
determined in the linear separable state; the basic idea of
which was described by Fig. 1 [17]. The solid and hollow
points in the figure represent two classes of sample sets,
namely, (xi, yi), i = 1,…,n, x ∈ RN, y ∈ {+1,−1}. H denotes
the classification face, while H1 and H2 represent the
samples closest to the classification face and the plane
parallel to the classification face, respectively, in each class;
and their distance γ is called the class interval. The optimal
classification face meant that the classification face can
correctly separate two classes (training error ratio was 0), as
well as maximize the class interval. Here, the class interval
γ equals to 2/||w|| in order to maximize the interval to the
equivalent of a minimized ||w||2. The existence of wrongly
classified samples can be allowed by leading in the positive
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relaxation factor ξi to form a punishment term, so that the
optimization problem with a so-called soft interval was
derived.

min
1

2
wk k2 þ C

X

i

xi ð1Þ

Subject to yi w � xið Þ þ b½ � � 1� xi ð2aÞ

And xi > 0 ð2bÞ
The classification face meeting the above conditions was

the optimal classification face, where the training sample
points in H1 and H2 were called support vectors. The
aforesaid optimal classification face problem can be
converted into a dual problem by using the Lagrange
optimization method, i.e. under constraint conditions:

Xn

i¼1

yiai ¼ 0; ð3aÞ

and 0 � ai � C ð3bÞ
for αi figuring out the maximum value of the function

Q að Þ ¼
Xn

i¼1

ai � 1

2

Xn

i;j¼1

aiajyiyj xi � xj
� � ð4Þ

where αi is the Lagrange multiplier corresponding to each
constraint condition (2) in the original problem. This was a
quadratic function optimized problem under unequal con-
straints; thus, there was a unique solution. It is easy to
prove that only a part of (usually minority of) αi in the
solution would be non-zero; the corresponding samples
were support vectors, with the quantity set as Ns. When the

above problem was solved, the optimal classification
function was

f ðxÞ ¼ sgn w � xð Þ þ bf g ¼ sgn
XNs

i¼1

a
»

i yi xi � xð Þ þ b
»

( )
;

ð5Þ

In the above dual problem, no matter the optimization
objective function (4) or classification function, (5) was
only related to the inner product computation between
training samples (xi·xj). If the nonlinear mapping Φ : RN →
Η reflected the sample of the input space to the high
dimensional (may be infinite dimensional) feature space Η,
then the training algorithm only used point product in the
space when constructing the optimal hyperplane in feature
space H, which was Φ(xi)

.Φ(xj); and there was no
individual Φ(xi). Therefore, if there was a function K, then
K( xi , xj ) = Φ(xi)

.Φ(xj), only the inner product
computation was actually required in the higher dimen-
sional space, which can be realized by the function in the
original space, and the form of transforming Φ was not
required. According to the functional theory, provided that
one kernel function K( xi, xj) met the Mercer condition, it
corresponded to the inner product of a transformation
space.

Therefore, the linear sorting after a non-linear transfor-
mation can be realized by using a proper inner product
function K( xi, xj) as the optimal classification face;
moreover, the complexity of the computation was not
increased. Here the objective function (4) changes to:

Q að Þ ¼
Xn

i¼1

ai � 1

2

Xn

i;j¼1

aiajyiyjK xi; xj
� �

; ð6Þ

The corresponding classification function also changes
to

f ðxÞ ¼ sgn
XNs

i¼1

a
»

i yiK xi; xð Þ þ b
»

 !
; ð7Þ

This is SVM. The kernel function used in this paper was
radial basis function.

K x; xið Þ ¼ exp �g x� xik k2
� �

ð8Þ

System architecture

Figure 2 illustrates a general architecture of a BAN-based
wireless BCI system. EEG sensors, along with other
sensors, such as electrocardiography (ECG), electromyog-
raphy (EMG), motion sensors and blood pressure sensors,

Optimal Classification 
Hyperplane 

γ

w

Class 1 

Class -1 

H

H2

H1

Fig. 1 SVM looks for the optimal classification hyperplane (heavy
line H) by maximizing class interval γ, and the two classes are
separated in the feature space. Hyperplane H is determined by W and
b, the calculation of W and b is completed by a support vector (dotted
lines H1 and H2 and points with circle)
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etc., send data to nearby personal server devices. Then,
through a Bluetooth/WLAN connection, these data are
streamed remotely to a backend system, where data analysis
unit are deployed to generate the up-to-date service
directives. Then, the interpreted action commands to the
service response system, which performs the desired tasks
according to the user’s expectation. Compared to traditional
BCI system, the BAN-based wireless BCI system can
dramatically reduce installation complexity, wire weight,
and trouble-shooting effort associated with traditional wired
BCI systems. Second, the proposed BCI system would
provide users with more freedom of posture and movement
so that they can perform their routine tasks in real-world
environments. However, the disadvantage comes from the
requirements of transmitting the raw EEG data through
wireless connections. In order to support the data rates,
some new radio technologies, such as Ultra-Wideband
(UWB), can be utilized to deal with the problem.

Compared to the architecture shown in Fig. 2, the signal
processing and feature extraction are performed in the BAN
(i.e., inter-BAN feature extraction). The signal processing
unit is integrated into a powerful single central processor to
reduce the amount of raw data, and save energy for data
transmissions, as shown in Fig. 3. However, this solution
also involves other challenges, such as advanced sensor
data processing. It is evident that the design of system
architecture should consider the performance of each design
component and the specific application requirements.

System implementation

Experimental mode and data acquisition

In this section, we present the method for data acquisition.
In the experiment, EEG signals are initiated by target and
non-target stimulus in imitating a natural reading mode.
The imitated natural reading mode referred to the mode that

allowed users to obtain job information from symbols
without mutations, which was like reading sentences in a
text under ordinary circumstances. The only difference was
that in natural reading, our sight moves relative to the
character sentences, whereas in imitation reading, the
symbol sentences move relative to our sight, so as to avoid
the EOG caused by sight movements contaminating EEG
signals.

The experimental subject was code H0717, a male
university student, aged 21, with normal vision, no nervous
or psychological diseases, and was a paid volunteer. Four
silver/silver chloride electrodes were placed according to
international 10–20 electrode placement system, located at Fz,
Cz, Pz, and Oz. The reference electrodes were placed at the
nipples, and the forehead center was earthed. Conductive
paste was smeared between electrodes and the skin to create a
contact impedance less than 5 km, and the data were amplified
by an HP5113 low noise amplifier; the transmission band was
set as 0.1~30 Hz, and 50 Hz power frequency wave trap was
set. The data acquisition system was HP4400 BOXCAR, the
sampling frequency was 427 Hz.

After the above preparations, the subject sat comfortably
in front of the monitor. The screen background was black,
with a small window of 16×16 pixels in the center, where
the symbols in the symbol string (Fig. 4c) composed of
non-target stimulus (Fig. 4b) and target stimulus (Fig. 4a)
passed through the small window in the middle of screen,
one by one from right to left, and at a uniform speed. The
subject was required to search within this small window for
the assigned target symbols contained in the symbol string
(Fig. 4a) in order to induce P300.

Each record started from a short pure tone, the subject fixed
his attention on the non-target smoothly moving string in the
small window in order to seek out the coming target. The
target stimulus would occur randomly 2~4 s after the short
pure tone. Each test recording time was 1.2 s (based on the
time of occurrence of target stimulus, −−320ms~880ms), 512
samples were collected.

Body Area Networks

Evoked 
potentials

Wireless EEG Sensor

Wireless 
transmitter

Wireless
receiver

Signal 
processing 
and feature 
extraction

Service Response 
System

Backend System
Fig. 2 Architecture of a BAN-
based wireless BCI system
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Feature analysis of target stimulus evoked signal

The selection of feature parameters determined the accuracy
and efficiency of the sorting algorithm. On one hand, in order
to increase the recognition rate, the feature parameters should
reflect the features of different modes as much as possible; on
the other hand, in order to increase an efficient execution, the
dimensions of the feature parameters should be as few as
possible. Therefore, this study averaged the EEG signals of all
selection operations of the subject synchronously, according
to the channels, and made snapshots of BEAM at different
times; the results are shown in Fig. 5.

According to Fig. 5, before the appearance of the target
(−−320 ms~0 ms), the EEG relief map of the subject was
relatively smooth, and in a random low-energy state. Accord-
ing to the mean waveform and four head snapshots after the
appearance of target, stable feature components can be induced
at Fz, Cz, Pz, and Oz channels at the middle axle of the
subject’s brain through testing, the peaks of N1, P2, N2, and P3
components appeared at about 100 ms, 200 ms, 250 ms, and
400 ms, respectively. This showed that the evoked potential, as
resulted from the imitating natural reading evoked mode, has
preferable stability. From the analysis of the waveforms of
different channels, it was found that

& The amplitudes of the N1 components in the four channels
were small, and almost equal to that of the EEG waveform
of the non-target stimulus, if its feature separability was too
low, the effect on signal classification may be too slight;

& After 200 ms latency, N2 components with large
amplitude in equivalent size occurred in Fz and Cz,
secondly Pz part, and there was little P2 component in Oz;

& At about 250 ms, N2 components occurred in four
channels, an interesting law was that the amplitude of N2
component increased gradually from the forehead to the
occiput, the latency in Oz was reduced by several ms.
Therefore, it was assumed the N2 component originated
from somewhere near Oz; this deduction was preliminarily
proven by using the isolated component analysis method;

& P3 components can occur in four channels, the peaks
occurred at about 420 ms, the amplitudes from large to
small were Pz, Cz, Oz, to Fz.

Signal pre-processing

For each subject, the 512 sample data of each selection
operation were recorded as MATLAB6 data files, the format
was channel number × sample × job number, which was then
processed as follows. First, the operation record of sample
value with amplitude value greater than 45 μV was regarded
as contaminated by EOG or myoelectricity and was thus
discarded. Therefore, 84 target stimulus signals and 84 non-
target stimulus signals were obtained from subject H, for 168
selection operation records in total. The average values were
then removed from each operation record based on the mean
of −−200 ms~0 ms signals. Afterwards, each operation record
was changed to a unit variance, which was energy normali-
zation according to the requirements of the SVM algorithm.
The above process was not related to complicated calcula-
tions, and can be quickly completed; thus, a good foundation
was created for subsequent on-line real-time classifications.

Single-trial estimation of target stimulus evoked signal

This study used the OSU SVMClassifier Matlab toolbox [18]
as the core to construct the sorting algorithm, ν-SVM
algorithm was used as the radial basis function equation,
and (8) was used as the kernel function, this method was an

Body Area Networks

Evoked 
potentials

Signal 
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and feature 
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Service Response 

System

Wireless 
transmitter

Fig. 3 Architecture of a BAN-
based wireless BCI system:
inter-BAN feature extraction

Fig. 4 Example of induced symbol string used in this study. All the
symbols were in the size of 16×16 pixels and had the same structure.
a Target symbol, the middle separatrix was dyed red. b Suppressor
mutation symbol (non-target stimulus), its difference to target symbol
was that the middle separatrix was not dyed red. c The induced
symbol string constructed by target symbol and suppressor mutation
symbol
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Fig. 5 VEP of subject H0717
evoked by non-target stimulus
(−320 ms~0 ms) and target
stimulus (0 ms~880 ms), and
snapshots of BEAM at different
times (four black dots in middle
axle of brain from top to bottom
are Fz, Cz, Pz and Oz). The
lateral axis is the time interval of
each selection operation, the
vertical axis is the mean ampli-
tude value of EEG signals of 84
selection operations in four
channels

Number of Samples

M
ag

ni
tu

de
 (

M
ic

ro
 V

ol
t)

0 100 200 300 400

2

1

0

-1

-2

-3
0 100 200 300 400

4

3

2

-1

-2

0 100 200 300 400

2

1

0

-1

-2

-3

1

0

Number of Samples

M
ag

ni
tu

de
 (

M
ic

ro
 V

ol
t)

0 100 200 300 400

4

3

2

-1

-2

1

0

Number of Samples

M
ag

ni
tu

de
 (

M
ic

ro
 V

ol
t)

5

Number of Samples

M
ag

ni
tu

de
 (

M
ic

ro
 V

ol
t)

0 100 200 300 400

2

1

0

-1

-2

-3

Number of Samples

M
ag

ni
tu

de
 (

M
ic

ro
 V

ol
t)

 

(A) (B)

(C)

(E)

(D)

Fig. 6 Mean average of the five
forms of feature combinations

1328 J Med Syst (2011) 35:1323–1331



improvement on optimization problem (1), after transforma-
tion, parameter C was replaced by ν; thus, Eq. (1) changes to

min
w;b;x;r

1

2
WTW � nrþ 1

l

Xl

i¼1

xi ð9Þ

Among which, ν is a new parameter with a range of 0~1; it
is the upper boundary ratio of marginal error value to number
of samples, as well as the lower boundary of ratio of support
vector number to number of samples. ρ is the class interval
parameter to be optimized, l is the characteristic quantity
dimensions. The constraint conditions corresponding to Eq.
(9) and the dual problem should also be adjusted accordingly,
literature [17] could be referred for details.

In order to avoid over trained underestimation of the
generalization error of the algorithm, this study divided all
selection operations into two equal parts, a training data set
and a test data set. Half (42) of training data set were target
stimulus records, while the other half (42) were non-target
stimulus records. The algorithm parameters were first
optimized in the training data set, and then the test
parameters were formed by using the Leave-One-Out
method; finally the test data set was tested to obtain the
mean recognition rate.

Experimental results

According to the analysis of features of target stimulus
evoked signal in section Support vector machine classifier,
for different feature combinations, this study used the

aforesaid method to test the subject. The experimental
results are as follows.

Test for fast feature classification

This test used five forms of feature combinations, the idea
of a feature selection was as follows: in order to apply the
sorting algorithm to real-time brain-computer interface, the
signals was classified as soon as possible to increase the
communication speed of the overall system; short time
interval signals was used for pattern feature classification
when possible, and the latency of characteristic signals
should be as short as possible. The combinations a and b
only used 100 ms long signals within 150 ms~250 ms in
several channels as the Eigen value; while combinations c,
d, and e used N2 that occurred in Oz as the feature. The
time interval of the overall combination was only 130 ms
(150 ms~280 ms). The five feature combinations were:

a. P2 components (150~250 ms) were selected from four
channels for combination. The mean chart related to
feature combination was as shown in Fig. 6a.

b. P2 components (150~250 ms) were selected from
channels 1, 2 to 3 for combination as seen in Fig. 6b.

c. P2 components (150~250 ms) were selected from
channels 1, 2 to 3, and N2 component (180~280 ms)
was selected from channel 4, as shown in Fig. 6c.

d. P2 components (150~250 ms) were selected from
channels 1, 2 to 3, and N2 component (180~280 ms)
was selected from channel 4; but N2 component had
phase inversion (N2=−−N2), as seen in Fig. 6d.

e. Same as above, but channel 2 had phase inversion, as
shown in Fig. 6e.

The analysis results of features of target stimulus and
non-target stimulus are shown in Table 1.

Test with small number of channels and feature dimensions

This test used two forms of feature combinations, the idea
of feature selection was as follows: the number of channels

Table 1 Experimental Results by using SVM. Each result is an average
value of ten data points. (The accuracy of random selection is 50%)

Feature combination scheme A B C D E

SVM parameter γ 8 4 2 2 1

ν 0.3 0.3 0.3 0.7 0.64

Accuracy(%) Max 84.5 73.8 83 88.1 86.9

Min 77.4 66.7 81 85.7 84.5

Avg. 81.8 70.1 81.5 86.9 85.5
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and feature dimensions was as few as possible; the signal
time interval was as short as possible; short time interval
signal contents with the most obvious feature in four
channels were selected. According to Fig. 5, P2 was the
most obvious in channel Fz, N2 was the most obvious in
channel Oz, and P3 had the maximum amplitude value in
all channels.

Combination A: Figure 7a shows the combination of P2
(150 ms~250 ms) in channel Fz and N2
(180 ms~280 ms) in channel Oz. For
such combination, the result of feature
classification is as shown in Table 2.

Combination B: Figure 7b shows the combination of P2
(150 ms~250 ms) in channel Fz and N2
( 1 8 0 m s ~ 2 8 0 m s ) a n d P 3
(350 ms~450 ms) in channel Oz; for
such combination, the result of feature
classification is as shown in Table 3.

Discussions

According to the above tests, the selection of characteristic
quantity was very important for improving classification
accuracy.

1. Using only the P2 component as the characteristic
quantity cannot attain satisfactory classification effects
(see combination b in Table 1, recognition rate was
only 70%).

2. The classification accuracy can be increased through the
phase inversion of N2 component in the combination
feature (in comparison to columns c and d in Table 1),
whereas P2 phase inversion would not result in this
phenomenon (in comparison to columns d and e in
Table 1).

3. Higher dimensions of characteristic quantity did not
mean higher classification accuracy (compare Table 1
and Table 2); therefore, the significance level of
characteristic quantity and the stability of each selection
operation were decisive. According to the comparison
between the classification accuracy of 92.1% in Table 2
and the combination c (classification accuracy of
81.5%) in Table 1, the former used two less channels’
P2 features than the latter, and the classification
accuracy was increased by 10%. In order to decipher
this puzzle, the EEG relief map of multiple selection
operations of four channels was analyzed; and it was
found that the amplitude of P2 component in channel
Fz was larger than that in other channels at 200 ms after
target stimulus, and it appeared steadily in most tests.
Whereas, P2 became increasingly weak in Cz and Pz,
and the number of absent was increased at 200 ms.
Such instability of components occurred directly in the
feature space; thus, the distribution of similar patterns
became increasingly messy, and non-linearity was
increased. Hence, the classification accuracy declined.

4. In order to accelerate classification and reduce the amount
of calculations, the feature dimensions was as low as
possible. According to the results in Tables 2 and 3, P2

Table 2 For combination A in Fig. 7, experimental results by using
SVM and its corresponding best parameters. Each result is an average
value of ten data points. (The accuracy of random selection is 50%).

In order to reduce feature dimensions, the data is sampled and the
classified results are compared

Sample frequency 427 Hz 213 Hz 107 Hz 53 Hz

SVM parameter γ 5 5 5 5

ν 0.01~0.4 0.01~0.4 0.01~0.4 0.01~0.4

Accuracy(%) Max 94 86.9 86.9 82.1

Min 91.7 85.7 82.1 78.6

Avg. 92.1 86.1 85.1 80.2

Table 3 For combination B in Fig. 5, experimental Results by using
SVM and its corresponding best parameters. Each result is an average
value of ten data points. (The accuracy of random selection is 50%).

In order to reduce feature dimensions, the data is sampled and the
classified results are compared

Sample Frequency 427 Hz 213 Hz 107 Hz 53 Hz

SVM parameter γ 2~4 2~4 2~4 2~4

ν 0.01~0.5 0.01~0.5 0.01~0.5 0.01~0.5

Accuracy(%) Max 100 100 98.8 97.6

Min 98.8 98.8 98.8 94

Avg. 98.8 98.8 98.8 96.4
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and N2 features were sensitive to sampling frequency,
when P3 features with larger weights were added, the
sampling frequency was reduced by 75%; the classifi-
cation accuracy was almost uninfluenced. It showed that
the frequency involved in the signal features of P2 and
N2 components was high; whereas, the P3 component
had only a low frequency component.

5. According to Table 2, the classification accuracy of
92% can be attained only by using 100 ms data of two
channels as the characteristic quantity, which was very
important for increasing the overall communication
speed of brain-controlled spelling devices. The analysis
shows that the speed of the brain-controlled spelling
device, constructed using the evoked EEG signals
generated by the imitating human natural reading
evoked mode as carriers, would be 5~20 times of that
of the existing devices, or above 90 bit/min [19].

6. Table 3 shows that an almost perfect pattern classifica-
tion effect can be reached using the optimal feature
combination of P2, N2, and P3. As this combination
was not overly sensitive to sampling frequency, it can
greatly reduce the feature dimensions and increase the
classification speed.

Conclusions

To use the new man-machine interactive mode, brain-
computer interface to construct brain-controlled spelling
devices, single recognition of communication carrier
signals must be realized. SVM is a non-linear classifier, as
its optimization procedure is completed only by its support
vectors. Moreover, it is fast and has good generalization
ability, and is especially applicable to the classification of
EEG signals with some non-linear behaviors. This algo-
rithm is very sensitive to parameters ν and γ; thus, it must
be carefully determined. Since the selection of characteris-
tic quantity is very important for classification accuracy,
this paper combined the feature components from four
tested channels for research. The results show that higher
dimensions of characteristic quantities, or more feature
components, did not translate into higher classification
accuracy. The classification accuracy rate of 92% can be
obtained only by using the short 100 ms data of P2 from Fz
and N2 from Oz as the feature for pattern classification.
When the characteristic quantity P3 component was added,
the feature dimensions can be greatly reduced by down
sampling for frequency division, and the mean classifica-
tion accuracy rate was 98.8%, the perfection of 100% can
be reached. These results create a good foundation for

increasing the overall communication speed of the brain-
computer interface.
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