
96 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 1, MARCH 2017

Energy Optimization With Dynamic Task
Scheduling Mobile Cloud Computing

Yibin Li, Min Chen, Senior Member, IEEE, Wenyun Dai, Student Member, IEEE, and
Meikang Qiu, Senior Member, IEEE

Abstract—The smartphone is a typical cyberphysical system
(CPS). It must be low energy consuming and highly reliable to
deal with the simple but frequent interactions with the cloud,
which constitutes the cloud-integrated CPS. Dynamic voltage scal-
ing (DVS) has emerged as a critical technique to leverage power
management by lowering the supply voltage and frequency of
processors. In this paper, based on the DVS technique, we propose
a novel Energy-aware Dynamic Task Scheduling (EDTS) algorithm
to minimize the total energy consumption for smartphones, while
satisfying stringent time constraints and the probability constraint
for applications. Experimental results indicate that the EDTS
algorithm can significantly reduce energy consumption for CPS,
as compared to the critical path scheduling method and the
parallelism-based scheduling algorithm.

Index Terms—Cloud-integrated cyberphysical system (CPS),
CPS, dynamic scheduling, dynamic voltage scaling (DVS).

I. INTRODUCTION

THE smartphone, as a typical cyberphysical system (CPS),
gains increasing attention nowadays. With the popularity

of embedded systems and the unprecedented development of
high integrated chips, increasing functions are moving onto
smartphones. Meanwhile, smartphones, as the most widely
used mobile devices, are facing more severe challenges than
others. The ever-increasing demands in rich interactive apps
and service, such as location-based service, social networking
service, mobile cloud service, and mobile information service,
have severely aggravated the energy consumption problem for
smartphones. Furthermore, to cater to public taste, manufactur-
ers produce smartphones with increasing large-screen displays.
That also increases the burden of batteries.

Meanwhile, with the development of cloud computing,
mobile cloud computing (MCC), which is a typical cloud-
integrated CPS, becomes a new trend, which is using rich cloud

Manuscript received February 2, 2015; revised May 1, 2015; accepted
May 6, 2015. Date of publication June 25, 2015; date of current version
March 10, 2017. The work of Y. Li was supported in part by the Interna-
tional Science and Technology Cooperation Program of China under Grant
2011DFR20090 and Grant 2014DFR70730, and in part by the Public Science
and Technology Research Funds Projects of Ocean under Grant 201205036-04.
The work of M. Qiu was supported in part by the National Science Founda-
tion under Grant 1457506. M. Chen was supported in part by NSFC under
Grant 2011CB302505 and by GuangDong Foundation Team under Grant
201001D0104726115.

Y. Li is with the School of Computer Science and Technology, Shandong
University, Jinan 255049, China (e-mail: liyibing@sdu.edu.cn).

M. Chen is with the School of Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan 430074, China (e-mail:
minchen@ieee.org; minchen2012@hust.edu.cn).

W. Dai and M. Qiu are with the Department of Computer Science, Pace
University, New York, NY 10038 USA.

Digital Object Identifier 10.1109/JSYST.2015.2442994

Fig. 1. Typical architecture for mobile device.

resources to make up the limitations of smartphones. Many
researches focus on how to achieve the seamless connection
between mobile and cloud [1], but they ignore an important
aspect, which is smartphones have limited power not only the
computational resource.

To support the connection between mobile and cloud, low-
power microprocessors are required to process these simple
but frequent tasks in smartphones [2]–[6]. To enhance en-
ergy efficiency and process various tasks with different per-
formance requirements, high-end mobile devices are designed
as heterogeneous embedded systems, which integrate multiple
processors with distinct processing power, such as PowerVR
Series7XT GPU family from Imagination. Multiprocessors can
offer greater computation per unit of power, leading to longer
battery life [7], but it is still critical to investigate tighter energy
budget strategies to guarantee functionalities of mobile devices.

Miniature is another vital feature of current CPS, particularly
smartphones. Therefore, there is an inherent conflict between
the miniaturization and multifunction of these devices and the
sustainable usage of their batteries. Most apps on smartphones
are not delay tolerant, and their acceleration is often at higher
expenses of energy consumption. In order to balance perfor-
mance and power consumption for these apps, smartphones
are usually designed with dynamic voltage scaling (DVS) by
integrating static CMOS logic into microprocessors [8], [9].
DVS is a powerful technique to reduce energy consumption and
is widely employed in various embedded systems [10], [11].
With the aid of this technology, different performance levels
for apps can be achieved by adjusting the operating frequency
of processors [12], [13].

Currently, the architecture of most mobile devices can be
abstracted into three layers, as shown in Fig. 1. The bottom
layer is the hardware, which is also known as the physical

1937-9234 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LI et al.: ENERGY OPTIMIZATION WITH DYNAMIC TASK SCHEDULING MOBILE CLOUD COMPUTING 97

system. Then, the second layer is the mobile operating system,
which has two main functions. The first one is supporting the
hardware below, and the second one is providing interface to
the upper layer, which is the apps and services layer. The apps
and services layer directly offers apps and services to users.

In MCC, as a cloud-integrated CPS, the mobile must have
lots of frequent interactions to the cloud, such as requesting
resources, sending computational request, and receiving results.
These tasks are simple but really power consuming under
wireless environment, because they are too frequent. To achieve
the perfect performance, we need to solve two problems. The
first one is making the energy cost as low as possible, while
still maintaining the performance. The second one is making
it highly reliable, which represents that the task must be suc-
cessfully completed at a high probability. As a result, we use
a time constraint and a probability constraint to analyze these
problems.

We devise an algorithm that utilizes the results from a
static scheduling algorithm and attempts to aggressively reduce
energy consumption, while satisfying the time and probability
constraints. Then, we simulate an Android environment to
evaluate our algorithm. The experimental results show that
compared to the critical path scheduling method and the
parallelism-based scheduling approach, our online scheduling
mechanism can reduce total energy consumption by 23.1% and
34.2% on average, respectively, while meeting the given timing
constraints.

The major contributions of this paper are threefold as follows:

1) We propose a dynamic scheduling algorithm for dealing
with the runtime variations.

2) We use a critical-path-based static scheduling algorithm
Data Flow Graph Critical Path (DFGCP) to obtain the
near-optimal solution, which meets the time and proba-
bility constraints.

3) We propose an optimal algorithm Critical Path Assign-
ment (CPA) for the critical path with a dynamic program-
ming approach.

II. RELATED WORK

In the past few years, numerous methodologies for low-
power CPS design have been proposed at operating system
level and architecture level. A scheduler was proposed in [7]
to monitor workloads for systems and adaptively schedule real-
time tasks, while considering the worst case CPU demands.
Through modification of the real-time scheduler and task man-
agement services in operating systems, this scheduler can boost
system performance and save power consumption for heavy
workloads and critical tasks. Targeting multimedia applications,
the authors in [14] proposed a soft real-time CPU scheduler
for mobile devices to reduce energy consumption. While these
studies focus on independent tasks, we consider dependencies
and real-time constraints between tasks.

DVS techniques can be used for tackling runtime variation,
while considering task dependencies. For example, Gruian [15]
applied a stochastic DVS technique on hard real-time systems
by taking into account task dependencies. Depending on the
probability distribution of the execution conditions for tasks,
Lorch and Smith [16] proposed an approach to modify scaling
algorithms, while maintaining their performance. However,

these methods assume task priorities and estimate CPU re-
quirements offline, which are not suitable for practical study.
Consequently, we propose a two-phase scheduling algorithm,
i.e., Energy-aware Dynamic Task Scheduling (EDTS), which
schedules tasks online based on the static scheduling results of
an initial scheduling.

The energy consumption is the most important constraint
when scheduling dependent tasks. Energy-aware static schedul-
ing is usually based on the information of the average case
or worst case task execution estimation [17]. At runtime, the
real execution time and energy consumption may exhibit high
variations [12], due to process variability, physical faults, and
voltage/frequency changes. In our model, we expect that each
core in the same processor can adjust its voltage and frequency
independently.

There are some other researches related on energy-aware
scheduling algorithms. For example, Xu et al. [18] proposed
a job power-aware scheduling mechanism to reduce HPC’s
electricity bill without degrading the system utilization. How-
ever, our research is focused on energy-aware scheduling al-
gorithms on mobile devices. Santinelli et al. [19] explored
how to efficiently reduce the power consumption of real-time
applications with constrained resource. Mei and Li proposed a
new algorithm called Energy-Aware Scheduling by Minimizing
Duplication [20], which considers the energy consumption and
the makespan of applications. In our research, we consider the
time constraint and the performance as well, in addition to the
energy constraint.

Wang et al. [21] presented an approach for variable partition-
ing and instruction scheduling to maximally exploit the bene-
fits. Their approach was built on a graph model, which strives
to capture both performance and power demands. Nevertheless,
this approach was based on multiple memory architecture,
while current mobile devices are single memory. Some other
researchers used genetic algorithm to achieve the optimization
of memory [22], [23].

In [24], the authors jointly presented a host of runtime
and compilation techniques to conceal the heterogeneity of
smartphones from developers. By investigating various features
of HTC and Apple, Li et al. [25] pointed out that the most
significant challenge of reuse in smartphones is the design
of software to accommodate heterogeneity of these devices.
However, our work focuses on using a dynamic programming
task scheduling technique to reduce energy consumption for
smartphones with DVS enabled.

There are some other researches related to MCC and cloud-
based CPS [26], [27]. Fahim et al. [28] analyzed an environment
in which computational offloading is adopted among mobile
devices. Yang et al. propose a framework to provide runtime
support for the dynamic computation partitioning and execution
of the application. This framework not only allows single-user
partitioning but also supports sharing computation instances
among multiple users [29]. The main aim of these researches
is to build an environment to allow smartphones easily being
connected to the cloud. However, they do not consider the
process inside smartphones and ignore the importance of the
efficiency of smartphones themselves.

In our previous research [30]–[32], we proposed a highly effi-
cient algorithm, which utilizes the results from a static schedul-
ing algorithm and aggressively reduces energy consumption.

98 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 1, MARCH 2017

In this paper, we improve our algorithm by considering the
probability constraint.

III. BASIC MODELS AND ALGORITHMS

A. DFG

In general, the tasks in smartphone applications are not
standalone. A certain number of tasks will have precedence
relationships due to the different functionality of each task
and communications between them. We use a directed acyclic
graph (DAG) to model the precedence constraints of smart-
phone applications.

A data flow graph (DFG) G = 〈U,ED, T,E,W 〉 is a node-
weighted DAG, where U = 〈u1, . . . , ui, . . . , uN 〉 is a set of
task nodes; ED ⊆ U × U is an edge set that defines the
precedence relations among nodes in U . For example, an edge
e(u → v) in the graph indicates that task v cannot be executed
until task u completes. T and E are sets of execution time and
energy consumption for all nodes in U , respectively. W is a set
of communication cost between tasks.

The execution time T of a task can be profiled by average
case execution time (ACET) or worst case execution time
(WCET) when the task is executed on a processor core. We
assume that the WCET and ACET of a task are always mea-
sured at the highest voltage level (i.e., with fastest speed).
Our approach uses ACET for the static scheduling. An edge
e ∈ ED is associated with a weight w that represents the worst
case communication cost between two dependent tasks, when
they are scheduled on two different processors. Generally, the
communication cost between two tasks is negligible, when they
are executed on the same processor. There is a timing constraint
TC for the whole task graph, which defines the time bound to
finish executing the entire task graph.

B. Energy Model

The dynamic power consumption (PAC) of CMOS circuits
integrated in smartphones is calculated by

PAC = CeffV
2
ddf (1)

where Vdd is the supply voltage, f is the operating frequency,
and Ceff is the effective switching capacitance. DVS reduces
dynamic power consumption according to quadratic depen-
dence on voltage.

The frequency f is represented as

f =
(Vdd − Vth)

α

kVdd
(2)

where Vth represents the threshold voltage, and k is a device-
dependent constant. α is a technology-dependent constant,
which varies between 1 and 2.

C. Algorithms

Here, we devise an algorithm (EDTS) to minimize the total
energy consumption, while satisfying the time and probability
constraint.

For real-time applications in CPS, we use the following
major steps to implement the energy-aware scheduling.

1) First, we partition and map the tasks in a DAG G onto
the microprocessors of a CPS platform. Then, an initial
schedule of DAG G with the task execution order and
communication links is obtained.

2) Second, we identify the critical path (CP) by finding the
path with the longest execution time. If there are more
than one longest path in the graph, we select the one with
the largest energy consumption in the DAG G.

3) Third, based on the ACETs for all tasks in the graph,
we can obtain a static schedule by our static scheduling
algorithm.

4) Finally, within each scanning period, the whole task
graph is dynamically scheduled, and the execution order
of each task is determined by our dynamic scheduling
algorithm.

We consider related architectural constraints, heterogeneity,
and resource capacities of CPS platforms; during partitioning
and mapping the tasks in a DAG, the available energy of
each processor may vary over time for different applications.
If the resource availability varies too much, the DAG needs
to be repartitioned and remapped onto processors to main-
tain energy efficiency. We adopt the partitioning scheme, i.e.,
Voltage Presence Indicator System (VPIS), proposed in [21]
to schedule tasks onto microprocessors, with the considera-
tion of various constraints and conditions. Our objective is
to balance the load and minimize the total system energy
consumption.

1) CPA Optimal Algorithm: We use a dynamic program-
ming method to solve the energy-aware scheduling problem for
CPS. Given the timing constraint TC, probability constraint
PC, a DAG G, and an assignment A, we give several defini-
tions as follows:

Definition 3.1—AssignmentA: An allocation scheme assigns
a specific voltage mode to each task in a DAG;

Definition 3.2—Gi: A subgraph i, which starts from the root
of the task graph until the node vi;

Definition 3.3—EA(G
i), TA(G

i), and PA(G
i): The total

energy consumption, the total execution time, and the total
probability of Gi under the assignment A.

In our algorithm, each step achieves a currently minimum
total energy consumption of Gi, while satisfying various timing
constraints and probability constraints.

A table Di,j (i represents a node number, and j represents
time) will be built, where each entry of this table stores the
smallest energy E that has been obtained.

In every step of our algorithm, we will consider at least
one task. When two tasks are added together, the total en-
ergy consumption is the sum of their energy consumption,
i.e., E′

i,j = E1
i,j + E2

i,j . Meanwhile, the total probability is
the average probability of these tasks, PA(G

i) = P 1
i,j

⋂
P 2
i,j =

P 1
i,j + P 2

i,j − P 1
i,j

⋃
P 2
i,j . For each entry, we only keep the

smallest total energy consumption with reasonable probability
and the corresponding voltage level assignment. When there is
more than one solution with the same energy consumption, we
keep the one with the highest probability. If the probabilities
are also the same, all solutions will be kept. When a CP is
found, we will use the optimal algorithm, i.e., CPA, to get the

LI et al.: ENERGY OPTIMIZATION WITH DYNAMIC TASK SCHEDULING MOBILE CLOUD COMPUTING 99

optimal solution for the energy-aware scheduling problem. The
algorithm is shown in Algorithm 1.

Algorithm 1 The CPA Algorithm for Critical Path.

Input: M different voltage levels, a critical path, a timing
constraint TC, and a probability constraint PC.

Output: An optimal assignment for the critical path.
Build a local table Bi,j for each node on the critical path;
1: Let D1,j = B1,j

2: Start from u1 → u|U |, compute D step by step;
3: for each time j of node ui, i > 1 do
4: for each time k in Bi,k, 1 ≤ k ≤ j do
5: if Di−1,j−k! = NULL then
6: Di,j = Di−1,j−k +Bi,k + αwi;
7: if Pi,j < PC then
8: return;
9: else
10: Di,j = max(Di,j , Probability) // keep the

maximum one if there are multiple results with
same energy cost;

11: Di,j = min(Di,j ,Energy); // keep the minimum
one if there are multiple results with same
probability;

12: end if
13: else
14: Continue;
15: end if
16: end for
17: end for
18: return D|U |,j ;

In the CPA algorithm, we first build a local table Bi,j for each
node. The table Bi,j stores the energy consumption of a node
under different voltage levels. In the next step of the algorithm,
when i = 1, there is only one node. We set the initial value, and
let D1,j = B1,j (line 1). Then, we build the table Di,j (lines
3–10), by using the dynamic programming method. For each
node ui for each j, we vary time k (1 ≤ k ≤ j) in table Bi,j

(line 4). We add energy consumption together in the two tables
Bi,k and Di−1,j−k (line 6). Then, we will check whether the
probability meets the requirement PC. If no, we keep the CPA
method until some scheme meets the requirement P . If yes, we
keep the results with the minimum energy cost. Meanwhile, we
keep the results with the maximum probability as well. We also
consider the communication cost wi, when tasks i and i+ 1
are scheduled on different microprocessors. If the two tasks are
implemented on the same core,α is 0; otherwise,α is 1. Finally,
we keep the smallest total energy and the corresponding voltage
selection. The energy in Di,j is the minimum total energy with
reasonable probability for graph Gi under the timing constraint
j and the probability constraint PC.

For example, for the DFG shown in Fig. 2(b), the initial pa-
rameters are shown in Fig. 2(a). We compute the corresponding
B table of node u1 and u2 as follows:

1) From node u1, we can get the (T (time): E (energy): P
(probability)) pairs, as follows: (1: 20: 0.98), (2: 20: 0.98),
(3: 10: 0.94), and (4: 10: 0.94).

2) We sort them by the time constraint from small to big, as
shown in Fig. 2(c).

Fig. 2. (a) Initial parameters. (b) DFG. (c) Corresponding B table. (d) Part of
the corresponding D table.

3) We use the same way to calculate node u2 and get the
(T (time): E (energy): P (probability)) pairs, as follows:
(2: 28: 0.96), (3: 22: 0.94), and (4: 22: 0.94).

4) Meanwhile, we calculate the path with lowest energy cost
to u1 and u2. Fig. 2(d) shows the correspondingDi,j table.

5) The first row of D table, which is the paths from u1 to u1.
Hence, the energy costs are the same with the first row of
B table.

6) We calculate the paths with lowest energy cost under dif-
ferent time constraints tou2, which is the second row in the
D table. There is no way from u1 to u2 that only consumes
one or two times; hence, the first two items are empty.

7) Entry D2,3 represents the path u1 → u2 with the time
constraint TC = j = 3. The only path that satisfies the
time constraint is D2,3 = D1,1 +B2,2, and the energy
consumption of this path is 20 + 28 = 48. The probabil-
ity of this path is 98%+ 96%− 100% = 94%.

8) Entry D2,4 represents the path u1 → u2 with the time
constraint TC = j = 4. Using the CPA algorithm, two
cases can satisfy this time constraint.
Case 1: 4=2 + 2, with D2,4=D1,2 +B2,2. Energy con-

sumption for this assignment is: 20 + 28 = 48.
The probability of this path is 98%+ 96%−
100% = 94%.

Case 2: 4=1 + 3, with D2,4=D1,1 +B2,3. Energy con-
sumption under this assignment mode is: 20 +
22 = 42. The probability of this path is 98%+
94%− 100% = 92%. Energy consumption of
Case 2 is less than that of Case 1, while the prob-
ability of Case 1 is bigger than that of Case 2.

9) Similar to above steps, calculating all the path with the
lowest energy cost, and fill the D table.

Time Complexity: It takes O(M) to compute one value of
Di,j , where M is the maximum number of voltage levels. Thus,
the complexity of the CPA algorithm is O(|N | ∗ TC ∗M),
where |N | is the number of nodes and TC is the given timing
constraint. Usually, the execution time of each node is bounded
by a constant. Hence, TC equals O(|N |c) (c is a constant). In
this case, CPA is a polynomial algorithm.

100 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 1, MARCH 2017

2) DFGCP Static Scheduling Algorithm: Here, we propose
a highly efficient algorithm, i.e., DFGCP, to solve the static
scheduling problem. The algorithm is shown in Algorithm 2.

Algorithm 2 The DFGCP Algorithm

Input:M different voltage levels, a DFGG=〈U,ED,T,E,W〉,
a timing constraintTC, and a probability constraintPC.

Output: An assignment for the DFG.
1: CP = findCriticalPath(G); // Find a critical path CP

of DFG G;
2: while Time(CP) > TC or Probability(CP) < PC do
3: Flag ← No;
4: Opt = CPA(M,CP, TC); //Use our CPA to find the

minimal total energy consumptions and corresponding
voltage assignments;

5: if Time(Opt)≤TC && Probability(Opt)≥PC then
6: Flag ← Yes;
7: end if
8: end while
9: if Flag == Yes then

10: Output the assignment of G;
11: else
12: Output “No Solution”; exit;
13: end if
14: For the nodes on the non-critical path (non-CP), we will

use CPA algorithm to find the minimal energy consump-
tions and keep the corresponding voltage levels.

15: Add together the energy of CP and non-CP, we get the
minimal total energy consumptions.

In the DFGCP algorithm, we first get a CP of the DFG G.
To meet the timing constraint and the probability constraint,
we need to judge whether this CP meets these requirements.
If the total execution time of the CP is larger than the timing
constraint TC or the probability of the CP is less than the
probability constraint PC, we will use the CPA algorithm to
find the optimal assignment for a new CP with the minimal
total energy consumption, the maximum probability, and the
corresponding voltage selections. In each step, we will consider
the voltage level transfer overheads when using DVS. For
each node, if it is not on the same processor with its parent
nodes, the communication cost with its parent nodes wi will
be considered. Finally, if we find a solution for CP within TC,
the algorithm continues using CPA to find the optimal solution
for non-CP paths. At this time, we fix the assignments of the
overlapping nodes of CP and non-CP paths.

Time Complexity: DFGCP is a polynomial-time algorithm.
The complexity of the CPA algorithm is O(|N | ∗ TC ∗M),
where |N | is the number of nodes and TC is the given timing
constraint. M is the maximum number of voltage levels. We
use CPA to compute every path once. The total number of
paths is bounded by O(|N |2). Hence, CPA is a polynomial-time
algorithm. For a sparse graph, the number of paths is very small,
assuming a constant c; then, the complexity is approximately
linear, and the amount of computation time is very small.

3) EDTS Dynamic Scheduling Algorithm: The static
scheduling algorithm DFGCP gives a solution by assuming all
tasks run at ACETs. However, in real-life scenarios, we do not
know in advance the actual execution time of a task for CPS

applications. The information of these tasks will change greatly
in runtime; thus, even an optimal static schedule can become
invalid in the dynamic case. Here, we present an aggressive
dynamic programming based on a scheduling algorithm called
EDTS, as shown in Algorithm 3. The EDTS algorithm uses
the results from the DFGCP static scheduling algorithm, which
obtains a near-optimal schedule based on the knowledge of
ACET of each task.

Algorithm 3 The EDTS Algorithm

Input:M different voltage levels, a DFGG=〈U,ED,T,E,W〉,
and a timing constraint TC.

Output: A dynamic scheduling for the DFG.
1: Get the initial scheduling by DFGCP algorithm;
2: Topologically sort the nodes, getting node sequence
ui ∈ U ;

3: for each node ui, 1 ≤ i ≤ |U |, not visited, get the one with
the earliest start time do

4: if required execution time is substantially different from
ACET then

5: Mark it as visited;
6: Run DFGCP algorithm for the remaining nodes and

find the new static schedule with minimal energy
consumption while satisfying the new timing con-
straint (TC = TC−

∑i
k=1 Tk, where

∑i
k=1 Tk is the

time used);
7: else
8: Continue;
9: end if

10: Finish node ui, and update system energy overhead and
the information (such as the starting time) of nodes that
are dependent on ui;

11: if current static schedule is not followed then
12: Run DFGCP algorithm for the remaining nodes and

find the new static schedule with minimal energy con-
sumption while satisfying the new timing constraint
(TC = TC −

∑i
k=1 Tk, where

∑i
k=1 Tk is the time

used);
13: else
14: Continue to the next node;
15: end if
16: end for

The actual execution time of a task may be greater or less
than its ACET; we first obtain a static schedule with DFGCP
by assuming every task takes its ACET. However, if every task
aggressively runs at this statically computed average case speed
during runtime, some of them may miss their deadlines. Our
EDTS algorithm uses the path information to track any changes
of tasks in CPS applications. When a task node is finished,
EDTS checks whether the schedule is followed. If not, then
the remaining task graph will be recomputed with the DFGCP
static scheduling algorithm. In addition, in the course of the im-
plementation of each node, whenever the variation of execution
time exceeds the prespecified threshold value, DFGCP will be
used to recompute. For example, we set difference ratios to be
±5% between the real execution time and its ACET used pre-
viously in DFGCP. The new computation will only implement
the remaining subgraph with the updated ACET values.

LI et al.: ENERGY OPTIMIZATION WITH DYNAMIC TASK SCHEDULING MOBILE CLOUD COMPUTING 101

Fig. 3. Motivational example. (a) Simple DAG. (b) Execution time and energy
consumption for each task at different voltage modes.

Fig. 4. Procedures to derive the minimal energy consumption for the DAG.
Ei[j]k represents the optimal energy consumption when assigning voltage
level k to task i with the time constrain j.

Time Complexity: Our dynamic scheduling algorithm, i.e.,
EDTS, progressively improves performance based on the
schedule obtained by the static scheduling, i.e., DFGCP. The
EDTS algorithm is shown in Algorithm 3. For a sparse graph,
the complexity of this algorithm is O(|N |(|N | ∗ TC ∗M)),
where |N | is the number of nodes, TC is the given timing
constraint, and M is the maximum number of voltage levels.
Hence, EDTS is a polynomial-time algorithm. For general
task graphs, since DFGCP is a polynomial-time algorithm and
EDTS calls O(|N |) times of DFGCP, EDTS is also polynomial.

IV. WORKING EXAMPLE

Fig. 3(a) shows a simple application on a CPS with two
different voltage levels, namely, V1 and V2. This application
includes four tasks, and the execution time and energy con-
sumption of each voltage mode are shown in Fig. 3(b). Our
objective is to schedule all tasks in the graph with the minimum
energy consumption, while satisfying a given time constraint.

Based on Fig. 3(a), the CP of the task graph is u1 → u2 →
u3 → u4. Assuming that the timing constraint (TC) of the CPS
application is 12 time units, Fig. 4 illustrates the procedure to
achieve the minimal energy consumption by our proposed static
scheduling algorithm. The voltage level assignment for each
task is recorded in a 2-D matrix Ei[j]k (i represents a task,
j represents a time period, and k represents the voltage mode
assignment to task i).

In Fig. 4, it is shown that the minimum energy consumption,
i.e., 61, is achieved, assigning the voltage mode V1 → u1, V2 →
u2, V2 → u3, and V2 → u4, respectively. First, we calculate
E4[8], because it is impossible to finish the task u4 within seven
time units.

Then, we can obtain the assignment as follows:

1) Starting from the minimum energy consumption at
E4[12], we know V2 is assigned to u4 and its execution
time t4(2) is 4 (for ti(k), i represents node number, and
k represents a voltage level), as shown in Fig. 3(b).

TABLE I
EXECUTION TIME, ENERGY CONSUMPTION, AND PROBABILITY

FOR EACH TASK AT DIFFERENT VOLTAGE MODES

2) Calculating the suboptimal combination of task modes
before adding task u4, we can get the index for E3[j] by
subtracting t4(2) from TC: TC − t4(2) = 12− 4 = 8.

3) Then, we arrive at the location E3[8], which means that
the optimal energy consumption to execute all the tasks
from the root to u3 is 50. By checking the mode assign-
ment, we can see that V2 is allocated to u3. Therefore, the
execution time of task u3 is t3(2) = 4.

4) In a similar way, we can determine that V2 is assigned to
u2 and its execution time is t2(2) = 3. Furthermore, V1 is
assigned to u1, and its execution time is t1(1) = 1. Thus,
the total execution time from u2 to u4 is 1 + 3 + 4 + 4 =
12 (which is not greater than 12), and the total energy
consumed is 20 + 22 + 8 + 11 = 61.

Then, we add the probability of whether some node can
complete the task in time. We use pi to represent the probability
of node i, if it can complete the task within the stipulated time.
pi is not a constant, and it may change greatly with different
nodes.

We change the motivational example, as shown in Table I, as
follows:

1) u1 has 98% probability of completing its task in T1(1)
using energyE1 underV1 voltage.u2 has 94% probability
of completing its task in T2(1) using energy E2 under V2

voltage.
2) u2 has 96% probability of completing its task in T1(2)

using energyE1 underV1 voltage.u2 has 94% probability
of completing its task in T2(2) using energy E2 under V2

voltage.
3) u3 has 96% probability of completing its task in T1(3)

using energyE1 underV1 voltage.u3 has 92% probability
of completing its task in T2(3) using energy E2 under V2

voltage.
4) u4 has 94% probability of completing its task in T1(4)

using energyE1 underV1 voltage.u4 has 92% probability
of completing its task in T2(4) using energy E2 under V2

voltage.

In this situation, when calculating the energy cost of every
path, we take the probability into consideration. When choosing
which path is the optimal among some optional choices, we
not only compare their energy cost but also compare their
probability.

For example, we set the time constraint to 10. We calculate
every path from node 1 to node 4 under different voltages, and
the result is shown in Fig. 5.

1) ForE1[j] and P1[j], if the time constraint is under 3, there
is only one path, which is V1, and the energy cost of using
is 20, while the probability is 98%. If the time constraint
is or higher than 3, there are two candidate paths. Using
V2, the energy cost is 10, while the probability is 94%.

102 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 1, MARCH 2017

Fig. 5. Procedures to derive the minimal energy consumption for the DAG.
Ei[j]k represents that assigning voltage level k to task i is optimal, when the
time constraint is j. Pi[j]k represents the probability of node i.

2) For E2[j] andP2[j], if the time constraint is under 3, there
are no solutions. If the time constraint is 3, there is only
one solution, whose path is “u1 using V1 → u2 using V1.”
The energy cost is (20 + 28) = 48, while the probability
is 98%+ 96%− 100% = 94%. If the time constraint is
more than 6, the solution with lowest energy is “u1 using
V2 → u2 using V2.” The energy cost is (10 + 22) = 32,
while the probability is 94%.

3) For E3[j] and P3[j], if the constraint is 7, there are two
solutions with different energy costs and probabilities.
The first path is “u1 using V1 → u2 using V1 → u3

using V2.” The second path is “u1 using V2 → u2 using
V1 → u3 using V1.” The energy cost and the probabil-
ity of the first path are (20 + 28 + 8) = 56 and 98%+
96%+ 92%− 200% = 86%, respectively. The energy
cost and the probability of the second path are (10 +
28 + 30) = 58 and 94%+ 96%+ 96%− 200% = 86%,
respectively. The first solution has lower energy but lower
probability. To meet any kinds of requirements, we keep
these two solutions both in the candidate solutions.

4) For E4[j] and P4[j], if the time constraint is 10, there are
three kinds of path. The first path is “u1 using V1 → u2

using V2 → u3 using V1 → u4 using V2.” The second
path is “u1 using V2 → u2 using V1 → u3 using V1 → u4

using V1.” The third path is “u1 using V1 → u2 using
V1 → u3 using V2 → u4 using V1.” The probability of
the first path is the same as that of the third path, which
is 98%+ 96%+ 92%+ 94%− 300% = 78%. Because
the energy cost of the first path is lower than that of the
third one, we only put the first and the second path into
the candidate solutions.

If we set the probability as more than 80% probability of
successfully completing the task, we can obtain the assignment,
as shown in Fig. 5, from u4 to u1, under the time constraint,
which is 10, and the probability constraint, which is 82%, and
the energy cost is 88.

V. EXPERIMENTS

Here, we use an Android emulator to simulate an Android
system, and conduct experiments with the EDTS algorithm
on a set of benchmarks, including wave digital filter (WDF),
infinite impulse filter, 2-D filter (2D), Floyd–Steinberg algo-
rithm (Floyd), and all-pole filter. The number of tasks for these
benchmarks has been augmented with the unfolding technique
(unfolding rate is 5).

Fig. 6. Setup of our experiment. The EDTS algorithm is used in the mobile
OS to schedule the tasks produced by the interface. The interface interacts with
local mobile apps and services and remote cloud tasks.

A. Setup

The proposed runtime system has been implemented, and a
simulation framework to evaluate its effectiveness has been built,
as shown in Fig. 6. We use the Android Software Development
Kit (SDK) to create a mobile device emulator, and simulate an
Android Nexus 7 with 1.7-GHz CPU, 2-GB RAM memory, and
7.0-in screen. We set the Android emulator as follows: the SDK
is Android 4.0 with application programming interface (API)
level 14, the memory size is 2 GB, the virtual machine heap is
64, and the internal storage is 64 GB. Then, we use a PC with
i7-4810MQ 2.80-GHz CPU and 16-GB memory as a cloud.

We modify the Android mobile operating system (OS) by
adding an interface module to deal with the interactions with the
cloud. Then, the interface module send requests to the schedul-
ing module, in which we implement our EDTS algorithm. The
EDTS algorithm schedules all the tasks to the hardware in
an Android device and sends back the results to the interface
module. In the interface module, we use Android Secure Socket
Layer protocol and the Handler to implement a messaging
application programming interface (MAPI), which simulates
the interaction of clouds and mobile devices.

The execution time (ACET and WCET) and energy con-
sumption are based on the profiling. The execution time of
each node follows a Gaussian distribution. We conducted ex-
periments using three different methods:

1) Method 1: Dynamic version parallelism-based (PS) algo-
rithm [33];

2) Method 2: Critical path dynamical scheduling (CPDS)
[34];

3) Method 3: Our EDTS algorithm.

Method 1 uses a greedy technique to further reclaim the slack
generated during runtime. Initially, all tasks are assigned with
a statically computed processing speed. All the available slacks
from a task due to its earlier completion are given to the next
expected task running on the same processor. The speed for the
next expected task will be adjusted based on its ready time.

The experiments are conducted based on the power model
of 70-nm processor [35]. Then, energy consumption per cycle
can be calculated by using [35, eq. (9)]. The power is derived
from the formula Ecyc = P/f . In experiments, we use M
different voltage types with a descending processing speed
in V1, V2, . . . , VM . The time and energy overheads during a
voltage transition among the aforementioned voltage levels are
calculated based on [36, eqs. (15) and (20)]. We compare our
results with those from Methods 1 and 2.

LI et al.: ENERGY OPTIMIZATION WITH DYNAMIC TASK SCHEDULING MOBILE CLOUD COMPUTING 103

Fig. 7. Comparison of total energy consumption for Method 1, Method 2, and EDTS, when (a) TC = 2000 ns and M = 3; (b) TC = 3000 ns and M = 4;
(c) TC = 4000 ns and M = 5; (d) TC = 2000 ns and M = 5; (e) TC = 2000 ns, PC = 80%, and M = 3; (f) TC = 3000 ns, PC = 80%, and M = 4;
(g) TC = 4000 ns, PC = 80%, and M = 5; (h) TC = 2000 ns, PC = 80%, and M = 5, across a set of benchmarks.

B. Results

The experimental results are shown in Fig. 7(a)–(h). The
value of “TC” is 2000, 3000, 4000, and 2000, while the amount
of voltages is 3, 4, 5, and 5, respectively. In these figures, M1,
M2, and EDTS represent the Method 1, Method 2, and our
proposed dynamic scheduling algorithm.

Fig. 7(a)–(d) shows experiments without probability con-
straints. In Fig. 7(a), when the time constraint is 2000 ns and
the amount of candidate voltage is 3, our algorithm can save
average 30.1% energy cost than Method 1. Meanwhile, the
energy cost of our algorithm is 20.2% less than the Method 2.

Then, we set the time constraint as 3000 ns, and the amount of
candidate voltage as 4. As shown in Fig. 7(b), our algorithm
saves over 32.67% energy cost than Method 1 and 21.53% than
the Method 2. In Fig. 7(c), when the time constraint is 4000 ns
and the amount of candidate voltage is 5, our algorithm can save
average 33.06% energy cost than Method 1. Meanwhile, the
energy cost of our algorithm is 20.67% less than the Method 2.
Then, we set the time constraint as 2000 ns and the amount of
candidate voltage as 5. As shown in Fig. 7(d), our algorithm
saves over 29.4% energy cost than Method 1 and 19.1% than
the Method 2.

104 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 1, MARCH 2017

With the increase of time constraint and amount of voltages,
our approach can save more energy cost. More amount of
voltages indicates that there are more candidate strategies with
different complete time, probability, and energy cost; thus, our
approach can offer more time–probability–energy pairs to meet
various kinds of requirements, and select the lowest energy
consuming strategy via the optimal algorithm CPA. However,
comparing the results in Fig. 7(a) and (c), we can find that,
under the same time constraint, the reduction in energy con-
sumption is less prominent than increasing time constraint.

Fig. 7(e)–(h) shows the experimental results with considering
the probability constraint. We set the probability constraint
“PC” as 80%. From these results, we can see that the solutions
with considering the probability constraint spend more energy
than the ones without considering the probability constraint.
However, if we add the consideration of the probability to
Methods 1 and 2, our approach still shows 33.8% and 27.4% re-
duction in energy consumption, respectively. Hence, our EDTS
algorithm can significantly improve the performance of CPS.

VI. CONCLUSION

To meet the energy cost and reliability constraints of cloud-
based CPS, we have studied how to minimize the total energy
consumption on smartphones. We have presented the EDTS
algorithm, which utilizes the results from a static scheduling al-
gorithm and aggressively reduces energy consumption. Experi-
mental results across a suite of benchmarks on Android system
have shown that our algorithm can achieve significantly higher
energy efficiency for CPS. In the future, we will test our approach
on more kinds of mobile devices, in addition to Android devices.
Our additional research will focus on combining more MCC
techniques with other algorithms to improve our algorithm.

REFERENCES

[1] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya, “Cloud-
based augmentation for mobile devices: Motivation, taxonomies, and open
challenges,” IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 337–368,
1st Quart. 2014.

[2] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins, “Turducken: Hier-
archical power management for mobile devices,” in Proc. ACM MobiSys,
Jun. 2005, pp. 261–274.

[3] B. Priyantha, D. Lymberopoulos, and J. Liu, “Enabling energy effi-
cient continuous sensing on mobile phones with LittleRock,” in Proc.
ACM/IEEE IPSN, Apr. 2010, pp. 420–421.

[4] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Proc. 38th
ISCA, 2011, pp. 365–376.

[5] R. Teodorescu and J. Torrellas, “Variation-aware application scheduling
and power management for chip multiprocessors,” in Proc. 35th ISCA,
2008, pp. 363–374.

[6] E. Ahmed, A. Gani, M. K. Khan, R. Buyya, and S. U. Khan, “Seamless
application execution in mobile cloud computing: Motivation, taxonomy,
and open challenges,” J. Netw. Comput. Appl., vol. 52, pp. 154–172,
Jun. 2015.

[7] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-power
embedded operating systems,” in Proc. ACM SOSP, Oct. 2001, pp. 89–102.

[8] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, “A dynamic
voltage scaled microprocessor system,” IEEE J. Solid-State Circuits,
vol. 35, no. 11, pp. 1571–1580, Nov. 2000.

[9] P. T. Bezerra et al., “Dynamic frequency scaling on android platforms
for energy consumption reduction,” in Proc. 8th ACM MSWiM, 2013,
pp. 189–196.

[10] Z. Wang, Z. Gu, M. Yao, and Z. Shao, “Endurance-aware allocation of
data variables on NVM-based scratchpad memory in real-time embed-
ded systems,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
Apr. 2015, DOI: 10.1109/TCAD.2015.2422846.

[11] Z. Wang, Z. Gu, and Z. Shao, “WCET-aware energy-efficient data
allocation on scratchpad memory for real-time embedded systems,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., Dec. 2014, DOI:
10.1109/TVLSI.2014.2379635.

[12] M. Qiu and E. H.-M. Sha, “Cost minimization while satisfying hard/soft
timing constraints for heterogeneous embedded systems,” Trans. Des.
Autom. Electron. Syst., vol. 14, no. 2, p. 25, Mar. 2009.

[13] Z. Wang, Z. Gu, and Z. Shao, “Optimizated allocation of data variables
to PCM/DRAM-based hybrid main memory for real-time embedded sys-
tems,” Embedded Syst. Lett., vol. 6, no. 3, pp. 61–64, Sep. 2014.

[14] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time CPU schedul-
ing for mobile multimedia systems,” in Proc. ACM SOSP, Oct. 2003,
pp. 149–163.

[15] F. Gruian, “Hard real-time scheduling for low-energy using stochastic data
and DVS processors,” in Proc. ISLPED, Aug. 2001, pp. 46–51.

[16] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling algo-
rithms with PACE,” in Proc. ACM SIGMETRICS, Jun. 2001, pp. 50–61.

[17] J. Luo and N. K. Jha, “Static and dynamic variable voltage scheduling
algorithms for real-time heterogeneous distributed embedded systems,”
in Proc. ASP-DAC, Jan. 2002, pp. 719–726.

[18] X. Yang et al., “Integrating dynamic pricing of electricity into
energy aware scheduling for HPC systems,” in Proc. SC, 2013,
pp. 60:1–60:11.

[19] L. Santinelli et al., “Energy-aware packet and task co-scheduling for
embedded systems,” in Proc. 10th ACM EMSOFT , 2010, pp. 279–288.

[20] J. Mei and K. Li, “Energy-aware scheduling algorithm with duplication
on heterogeneous computing systems,” in Proc. ACM/IEEE 13th GRID,
2012, pp. 122–129.

[21] Z. Wang and X. S. Hu, “Energy-aware variable partitioning and instruc-
tion scheduling for multibank memory architectures,” ACM Trans. Des.
Autom. Electron. Syst., no. 2, pp. 369–388, Apr. 2005.

[22] M. Qiu, M. Zhong, J. Li, K. Gai, and Z. Zong, “Phase-change mem-
ory optimization for green cloud with genetic algorithm,” IEEE Trans.
Comput., Mar. 2015, DOI: 10.1109/TC.2015.2409857.

[23] M. Qiu et al., “Data allocation for hybrid memory with genetic al-
gorithm,” IEEE Trans. Emerging Topics Comput., Feb. 2015, DOI:
10.1109/TETC.2015.2398824.

[24] F. X. Lin, Z. Wang, R. LiKamWa, and L. Zhong, “Transparent Pro-
gramming of Heterogeneous Smartphones for Sensing,” arXiv preprint
arXiv:1103.2348, 2011.

[25] X. Li et al., “Smartphone evolution and reuse: Establishing a more sus-
tainable model,” in Proc. ICPPW, Sep. 2010, pp. 476–484.

[26] J. Wan, D. Zhang, S. Zhao, L. T. Yang, and J. Lloret, “Context-aware
vehicular cyber-physical systems with cloud support: Architecture, chal-
lenges, and solutions,” IEEE Commun. Mag., vol. 52, no. 8, pp. 106–113,
Aug. 2014.

[27] J. Wan et al., “VCMIA: A novel architecture for integrating vehicu-
lar cyber-physical systems and mobile cloud computing,” Mobile Netw.
Appl., vol. 19, no. 2, pp. 153–160, Apr. 2014.

[28] A. Fahim, A. Mtibaa, and K. A. Harras, “Making the case for computa-
tional offloading in mobile device clouds,” in Proc. 19th ACM MobiCom,
Miami, FL, USA, 2013, pp. 203–205.

[29] L. Yang et al., “A framework for partitioning and execution of data stream
applications in mobile cloud computing,” SIGMETRICS Perform. Eval.
Rev., vol. 40, no. 4, pp. 23–32, Apr. 2013.

[30] M. Qiu, Z. Chen, L. T. Yang, X. Qin, and B. Wang, “Towards power-
efficient smartphones by energy-aware dynamic task scheduling,” in Proc.
IEEE 9th HPCC-ICESS, 2012, pp. 1466–1472.

[31] J. Niu, C. Liu, Y. Gao, and M. Qiu, “Energy efficient task assignment with
guaranteed probability satisfying timing constraints for embedded sys-
tems,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 8, pp. 2043–2052,
Aug. 2014.

[32] M. Qiu, Z. Chen, and M. Liu, “Low-power low-latency data allocation for
hybrid scratch-pad memory,” IEEE Embedded Syst. Lett., vol. 6, no. 4,
pp. 69–72, Dec. 2014.

[33] Y. Liu, B. Veeravalli, and S. Viswanathan, “Critical-path based low-energy
scheduling algorithms for body area network systems,” in Proc. IEEE
RTCSA, Aug. 2007, pp. 301–308.

[34] R. Mishra, N. Rastogi, D. Zhu, D. Mosse, and R. Melhem, “Energy aware
scheduling for distributed real-time systems,” in Proc. IPDPS, Apr. 2003,
pp. 1–9.

[35] S. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Combined dynamic
voltage scaling and adaptive body biasing for lower power microproces-
sors under dynamic workloads,” in Proc. IEEE/ACM ICCAD, 2002,
pp. 721–725.

[36] J. Park, D. Shin, N. Chang, and M. Padram, “Accurate modeling and
calculation of delay and energy overheads of dynamic voltage scaling
in modern high-performance microprocessors,” in Proc. ACM ISLPED,
Aug. 2010, pp. 419–424.

LI et al.: ENERGY OPTIMIZATION WITH DYNAMIC TASK SCHEDULING MOBILE CLOUD COMPUTING 105

Yibin Li received the Ph.D. degree from the School
of Electronic, Electrical and Systems Engineer-
ing, Loughborough University, Loughborough, U.K.,
in 2009.

During his Ph.D. wrap-up stage, he was with
The Institute of Electronics, Communications and
Information Technology (ECIT), Queen’s Univer-
sity of Belfast, Belfast, U.K. In 2010, he joined
the Embedded Group in the Department of Com-
puter Science and Engineering, Shandong Univer-
sity, Jinan, China, as an Associate Professor. He

has been engaged in several projects, including embedded design for Lidar
system, the reconfigurable hardware implementation of Advanced Encryption
Standard, etc.

Min Chen (M’08–SM’09) received the Ph.D degree
in Electrical Engineering from South China Univer-
sity of Technology in 2004.

He is a Professor with the School of Computer
Science and Technology, Huazhong University of
Science and Technology, Wuhan, China. From Sep-
tember 2009 to February 2012, he was an Assis-
tant Professor with the School of Computer Science
and Engineering, Seoul National University (SNU),
Seoul, Korea. From 2008 to 2009, he was the R&D
Director with Confederal Networks Inc. He was a

Postdoctoral Fellow with the Department of Electrical and Computer Engi-
neering, University of British Columbia (UBC), Vancouver, BC, Canada, for
three years. Before joining UBC, he was a Postdoctoral Fellow with SNU, for
one and a half years. He has more than 180 paper publications, including 85
Science Citation Index papers. His research focuses on Internet of Things, big
data, machine-to-machine communications, body area networks, E-healthcare,
mobile cloud computing, ad hoc cloudlets, cloud-assisted mobile computing,
ubiquitous network and services, and multimedia transmission over wireless
network, etc.

Prof. Chen was a Technical Program Committee Member of the IEEE
International Conference on Computer Communications (INFOCOM) 2013
and INFOCOM 2014. He was a recipient of the Best Paper Award from the
IEEE International Conference on Communications (ICC 2012) and the Best
Paper Runner-Up Award from the International Conference on Heterogeneous
Networking for Quality, Reliability, Security and Robustness (Qshine 2008).
He serves as an Editor or Associate Editor for Information Sciences, Wireless
Communications and Mobile Computing, IET Communications, IET Networks,
Wiley International Journal of Security and Communication Networks, Journal
of Internet Technology, KSII Transactions on Internet and Information Systems,
and International Journal of Sensor Networks. He serves as a Managing Editor
for the International Journal of Autonomous and Adaptive Communications
Systems (IJAACS) and the International Journal of Arts and Technology
(IJART). He serves as a Guest Editor for the IEEE NETWORK, the IEEE
WIRELESS COMMUNICATIONS MAGAZINE, etc. He is the Chair of the IEEE
Computer Society Special Technical Communities on Big Data. He was a
Cochair of the IEEE ICC 2012 Communications Theory Symposium and of the
IEEE ICC 2013 Wireless Networks Symposium. He was the General Cochair of
the IEEE International Conference on Computer and Information Technology
(CIT) 2012 and Mobimedia 2015. He is the General Vice Chair of Tridentcom
2014. He was also a Keynote Speaker for CyberC 2012 and Mobiquitous 2012.

Wenyun Dai (S’13) received the B.S. degree from
Xiamen University, Xiamen, China, and the M.S.
degree Shanghai Jiao Tong University, Shanghai,
China. He is currently working toward the Ph.D.
degree with the Seidenberg School of Computer
Science and Information Systems, Pace University,
New York, NY, USA.

Meikang Qiu (SM’07) received the B.E. and
M.E. degrees from Shanghai Jiao Tong University,
Shanghai, China. He received the M.S. and Ph.D.
degrees in computer science from The University of
Texas at Dallas, Richardson, TX, USA, in 2003 and
2007, respectively.

He is currently an Associate Professor of com-
puter engineering with Pace University, New York,
NY, USA. He was with the Chinese Helicopter R&D
Institute, IBM, etc. His research interests include
cyber security, embedded systems, cloud computing,

smart grid, microprocessor, data analytics, etc. A lot of novel results have
been produced, and most of them have already been reported to the research
community through high-quality journals [such as IEEE TRANSACTIONS

ON COMPUTER, ACM Transactions on Design Automation, IEEE TRANS-
ACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, and
Journal of Parallel and Distributed Computing (JPDC)] and conference papers
[such as the ACM/IEEE Design, Automation and Test in Europe (DATE);
the International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS); and the Design Automation Conference]. He has
published four books, more than 200 peer-reviewed journal and conference
papers (including more than 100 journal articles and more than 100 conference
papers), and he is the holder of three patents.

Prof. Qiu is an ACM Senior Member. He was a recipient of the ACM
Transactions on Design Automation of Electrical Systems (TODAES) 2011
Best Paper Award. His paper about cloud computing has been published in
JPDC (Elsevier) and ranked #1 in the 2012 Most Downloaded Paper of JPDC.
He has also been a recipient of four Conference Best Paper Awards [IEEE/ACM
International Conference on Embedded Software Systems (ICESS’12),
IEEE International Conference on Green Computing and Communications
(GreenCom’10), IEEE International Conference on Embedded and Ubiquitous
Computing (EUC’10), IEEE International Conference on Computational Sci-
ence and Engineering (CSE’09)] in the recent four years He was also a recipient
of the Navy Summer Faculty Award in 2012 and the Air Force Summer Faculty
Award in 2009. His research is supported by the National Science Foundation
and industrial companies such as Nokia, TCL, and Cavium. He is currently
an Associate Editor of the IEEE TRANSACTIONS ON COMPUTERS and the
IEEE TRANSACTIONS ON CLOUD COMPUTING. He is the General Chair of
the IEEE International Conference on High Performance and Communications,
International Conference on Embedded Software and Systems, and Interna-
tional Symposium on Cyberspace Safety and Security (HPCC/ICESS/CSS),
the General Chair of the IEEE International Conference on Cyber Secu-
rity and Cloud Computing (CSCloud’15) and the International Conference
on Network and System Security (NSS’15), and the Steering Committee
Chair of the IEEE International Symposium on Big Data Security and Cloud
(BigDataSecurity 2015).

