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• We propose a topic model based approach to discover user preference distribution and doctor feature distribution.
• We propose an emotion-aware approach to identify emotional offset in user reviews via sentiment analysis.
• We incorporate topic model and emotional offset into the matrix factorization model.
• The experimental results show that the proposed model provides a high-performance healthcare recommendation.
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a b s t r a c t

Nowadays, crowd-sourced review websites provide decision support for various aspects of daily life,
including shopping, local services, healthcare, etc. However, one of the most important challenges for
existing healthcare review websites is the lack of personalized and professionalized guidelines for users
to choose medical services. In this paper, we develop a novel healthcare recommendation system called
iDoctor, which is based on hybrid matrix factorization methods. iDoctor differs from previous work in
the following aspects: (1) emotional offset of user reviews can be unveiled by sentiment analysis and
be utilized to revise original user ratings; (2) user preference and doctor feature are extracted by Latent
Dirichlet Allocation and incorporated into conventional matrix factorization. We compare iDoctor with
previous healthcare recommendation methods using real datasets. The experimental results show that
iDoctor provides a higher predication rating and increases the accuracy of healthcare recommendation
significantly.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

With the rapid development of mobile networks such as
the fifth generation (5G) system [1,2], a significant amount
of professional knowledge from various sectors is available to
Internet users at anywhere and can be accessed anytime to provide
assistance decision [3,4]. For example, we can choose different
movies according to the ratings on IMDB,1 while the selection
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of restaurants, hotels and stores can be referred to other users’
reviews on Yelp.2 Similarly, the way that people choose medical
service is changing with health related reviews websites, such as
Vitals,3 Healthgrades4 and RateMDs,5 etc. Through these websites,
detailed information about doctors can be obtained for choosing
doctor with an online appointment. This innovative process
of medical consultation exhibits high efficiency compared to
traditional onsite doctor selection [5]. However, several challenges
exist to enable personalized and accurate medical services:

2 http://www.yelp.com/.
3 http://www.vitals.com/.
4 http://www.healthgrades.com/.
5 http://www.ratemds.com.
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Table 1
Emotional offset in user reviews.

Text

easy-going person. It is not always typical nowadays to get a PCPa who one
feels comfortable speaking with. As for the staff, only two of the doctor’s
assistants were kind to my mother. The rest such as the lady who sits at the
window to collect payments gives an attitude that the patient is a bother as
they are never friendly nor show appreciation. The way we are treated is that
we are bothering them which is not right. It is truly regretful.
a Primary care physician.

• Personalized and professionalized demand: It is very com-
monnowadays for patients to searchmedical service bydisease,
but the search results may contain too many doctors to meet
diverse needs [6]. Furthermore, user experience is always the
most important for the system design [7]. For example, some
users would much rather find a doctor nearby, while others
prefer prescription to injection as treatment. Unfortunately, at
present such personalization and professionalization demand
cannot be satisfied intelligently according to user and doctor
feature [8].

• Emotional offset: Like other sectors, it is a great issue for the
medical crowd-sourced reviews that rating accuracy is often
interfered by users emotion [9]. For example, a doctor’s rating
is 4 and a review about him is presented in Table 1. It can be
concluded that this doctor is not so welcomed and such rating
is possibly an encouragement,which has directly influenced the
objectivity and accuracy of doctors estimation.

To address these challenges, this article proposes a personalized
and professionalized doctor recommendation system named
iDoctor, which can conduct comprehensive analysis on healthcare
crowd-sourced reviews and perform text sentiment analysis, topic
model, matrix factorization and other methods. Specifically, this
article makes the following contributions: (1) We propose a topic
model based approach to discover user preference distribution and
doctor feature distribution, which are incorporated into thematrix
factorization model to provide more accurate and personalized
medical recommendation. (2) We propose an emotion-aware
approach to identify emotional offset in user reviews via sentiment
analysis, which is incorporated into thematrix factorizationmodel
to provide more objective recommendation.

The remainder of this article is organized as follows. Section 2
presents related works of matrix factorization, text sentiment
analysis, and topic model. In Section 3, we introduce iDoctor
architecture, theories foundation, and technical details. Section 4
analyzes the performance of recommendationprovidedby iDoctor,
and compares itwith other recommendations. Finally,we conclude
this article in Section 5.

2. Related works

2.1. Matrix factorization

Nowadays, the recommendation based on matrix factorization
proposed by Koren et al. in [10], has achieved acceptable result for
rating prediction. Through this model, users and items aremapped
to a low dimensional latent factor space which is the explanation
to users ratings, and a user-item rating matrix is regarded as the
product of user and item as presented in Eq. (1).

Rm×n = Pm×k ∗ Qk×n (1)

inwhich k represents the number of selected latent factors, P andQ
represent the weights of each user and item for each characteristic
in latent factor space, which are the result of rating matrix R
factorization and used for rating prediction. Usually, Stochastic
Gradient Descent (SGD) [11] is used for calculating P and Q .
Remarkably, some latent factors can be ignored, so k < m, n.
For example, category, director and actor attract more attention
than duration and language, which can be ignored in matrix
factorization.

Because of the good performance of matrix factorization, many
researchers try to extend this work. In [12], Jamali et al. proposed a
matrix factorization with trust propagation for recommendation
in social networks. In [13], Baltrunas et al. proposed matrix
factorization based approach for context aware recommendation.

2.2. Text sentiment analysis

User emotion plays an important role in market analysis,
opinion mining and human–computer interaction, so more and
more attention has been attracted to emotion recognition [14]. In
general, it is complex for emotion recognition through language
and facial expression, whereas the development of psychology and
linguistics simplifies the process of text sentiment analysis. The
text document contains not only topics but also user’s emotional
features that users expressions always correlate well with the
emotion at that time.

At present, quite a few works try to integrate emotional actors
into personalized recommendation [15]. In [16], Poirier et al.
proposed a collaborative filtering recommendation according to
sentiment analysis of user reviews instead of rating. In [17], Ko
et al. proposed a hybrid recommendation algorithm based on
content and collaborative filtering, in which the vector of item
features and user emotion is calculated from item descriptions and
user reviews.

2.3. Topic model

In the topic model, a document is regarded as the mixture and
combination of multiple topics, and each word in the document is
generated by such a procedure that a topic is selected with certain
probability from document-topic distribution and then this word
is selected with certain probability from topic-word distribution.
Currently, the Latent Dirichlet Allocation (LDA) topic model is
widely adopted for document topic extraction. Through LDA, topics
and their probability distribution can be calculated for analyzing
document similarity, which is essential for document classification
and personalized recommendation.

Currently, there are many proposals that try to incorporate
topic model into matrix factorization. In [18], Agarwal et al.
represented item with some words, which are mapped to a
multi-topic distribution, and provide recommendation through
regression forecasting. In [19], McAuley et al. used topic model
to extract item features from user reviews, integrate them with
matrix factorization, and verify that the accuracy of this proposal
is higher than rating matrix.

3. iDoctor: medical recommendation based on hybrid matrix
factorization

In this article, we propose iDoctor to provide user with pro-
fessionalized and personalized doctor recommendation through
mining user emotion and preference from user rating and reviews
about doctors. Specifically, it includes the following modules, and
the architecture is illustrated in Fig. 1:

• Sentiment analysis module, which can calculate user emo-
tional offset from user reviews text.

• Topic modeling module, which is used to extract the
distribution of user preferences and doctor features.

• Hybridmatrix factorizationmodule, which is integrated with
two feature distributions extracted by LDA for rating prediction.
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Fig. 1. Architecture of the iDoctor system.
3.1. Sentiment analysis for emotional offset

Considering the emotional offset in user reviews about doctor,
sentiment analysis is necessary to calculate the offset for revising
the original rating. Specifically, we calculate the emotional offset
through non-supervisory learning method based on sentiment
lexicon in the following steps:
1. Each user review text is preprocessed, including word segmen-

tation and morphological normalization.
2. After removing stopword and punctuation, we have a collection

of words which may involve emotional offset.
3. With sentiment lexicon SentiWordNet 3.0 [20], the emotional

offset of each review can be calculated.
4. Furthermore, considering the influence of negative words, it is

necessary to split each review in punctuation. In the separated
subsentence, if the number of negatives is odd, the polarity
(positive ‘‘+’’ or negative ‘‘−’’) of this subsentence should be
reversed. Obviously, the overall emotional offset is the sum of
all the subsentence.

Assume that there are i words in subsentences sub, we can
calculate the sentiment value with Eqs. (2) and (3).

Pol(sub) =


−1 if the number of negative words in sub is odd
1 if the number of negative words in sub is even

(2)

Sen(sub) =

 
wi∈sub

SentiWordNet(wi) × Pol(sub)


. (3)

Wherein, Pol(sub) represents the polarity of sub; SentiWordNet
(wi) represents the sentiment value of word i calculated according
to SentiWordNet 3.0.

However, there is significant difference among user review
lengths, and the emotional offset of longer review is most likely
higher than shorter one. In order to balance the influences
that the different length of review exert over overall variance,
normalization is essential to calculate the overall emotional offset
of user review.

Assume that there are j subsentences in review re including
n sentiment words, we can calculate the emotional offset with
Eq. (4).

Offset(re) =


subj∈re

Sen(subj)

n
. (4)

Obviously, the emotional offset of each user review falls in the
range of [−1, 1], which is used to revise the original rating.

3.2. Topic modeling for user preference

Generally, user reviews contain detailed personalized evalua-
tion about doctors, such as their feelings towards medical envi-
ronment, doctor’s ability and attitude. On the one hand, every user
preference can be discovered from these details, which is the ba-
sis for personalized recommendation. On the other hand, Table 2
describes that doctor features can be summarized from different
user’s reviews, such as specialty, fee range and prescribing habits,
which also may be the basis of doctor selection.

Therefore, LDAmodel is adopted by iDoctor to extract the topics
of user latent preference and doctor features can be extracted
from user review comments on doctors, which are involved in
matrix factorization for providing more accurate and personalized
recommendation.

3.3. Hybrid matrix factorization for personalized and professionalized
doctor recommendation

Based on the emotional offset calculated in Section 3.1, the
original rating is expected to be revised with Eq. (5).
RSij = ρRij + (1 − ρ)Sij (5)
in which RSij represents the revised rating on doctor j by user i, Rij
represent the original rating, Sui represents the emotional offset,
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Table 2
The features included in user reviews.

Text Feature

Dr. Davis is a gem! Extremely reassuring,
knowledgeable & smart. I had been fretting about an
ongoing problem, wondering if it could be something
else. My PCP just did his prescribing a pill call me in a
week thing. I wanted to talk to someone & have an
exam! Well Dr. Davis did just that & took his time to
explain—what a novel idea! He had some
recommendations which are helping me. The main
thing was this man responded to me with kindness &
concern & did his best to give me peace of mind.

Reassuring,
knowledgeable,
smart, took time to
explain, kindness,
concern

and rho is used for adjusting the weight between original rating
and emotional offset.With Eq. (5), user emotional factor is involved
in the matric factorization through the revised user–doctor rating
matrix.

In Section 3.2, the preference topic distribution of user i,
namely,Ui = (x1, x2, . . . , xk), and the features topic distribution of
doctor j, namely, Ij = (y1, y2, . . . , yk), are calculated through LDA.
In the above expressions, k represents the number of latent topics.

In the conventional matrix factorization, which is named
Basic Matrix Factorization (BMF) in this article, the factorized
matrixes cannot represent personalization. Hence, we propose
Hybrid Matrix Factorization (HMF) involving user preference and
doctor feature for more personalized recommendation, and loss
function is defined as presented in Eq. (6),
J = ∥RS − P × Q T

∥
2
F + α∥U − P × A∥

2
F

+ β∥I − Q × A∥
2
F + λ(∥P∥

2
F + ∥Q∥

2
F + ∥A∥

2
F ), (6)

in which RS represents the rating matrix revised with emotional
offset, P represents user latent factor matrix, Q represents doctor
latent factor matrix, α is used for adjusting the weight of user
preference distribution, while β is a parameter used for adjusting
the weight of doctor feature distribution, and λ is used for
regulating the weight of regularizing filter.

In order to achieve the best performance for HMF, Eq. (6) is
expected to be minimized. After factorization, lower dimension
matrixes of P , Q and A represent user, doctor, and the latent-topic-
mappingmatrix of latent-factor-ratingmatrix respectively. Finally,
rating is available to be predicted through matrix multiply P × Q ,
and latent factor matrixes P and Q are calculated by SGD, which
includes the partial derivatives presented in Eqs. (7), (8), and (9).

∂ J
∂P

= −2(R − P × Q T )Q − 2α(U − P × A)AT
+ 2λP (7)

∂ J
∂Q

= −2PT (R − P × Q T ) − 2β(I − Q × A)AT
+ 2λQ (8)

∂ J
∂A

= −2αPT (U − P × A) − 2βQ T (I − Q × A) + 2λA. (9)

4. Experiments and analysis

4.1. Experimental data and evaluation standards

Experimental data in this article is obtained from a crowd-
sourced review website called Yelp.6 We select rating and
reviews about three types doctor (i.e. Internal Medicine Family
Practice and Urgent Care) in Pittsburgh, Charlotte, Phoenixand
Las Vegas for experiment. All the data are preprocessed by
Natural Language Toolkit (NLTK),7 which is a leading platform for

6 http://www.yelp.com/dataset_challenge/.
7 http://www.nltk.org/.
Table 3
Parameters to be determined.

Parameter Representation Optimum

η Learning rate 0.001
λ Regularization parameter 0.1
N Iterations 100
ρ Weight of original rating 0.7
K Number of latent topic 30
α Weight of user preference 0.1
β Weight of doctor feature 0.1

building Python programs to work with human language data,
for word segmentation, removal of punctuation and stop word,
and lemmatization. In the experiment, around 80% of this data
are randomly selected for training, while the others are used
for verifying the performance of our proposal. In particular, the
experimental data includes 97618 reviews about 8519 doctors
submitted by 12036 users.

Furthermore, Root Mean Square Error (RMSE) [21] is used
for evaluating the accuracy of the proposed recommendation
algorithm. With Eq. (10), the RMSE between predicted rating and
actual rating can be calculated that the smaller the RMSE is, the
better the performance of recommendation is.

RMSE =

1
n

n
i=1

(pi − ri)2. (10)

In the above equation, n is the number of records in test data
set, pi represents the predicted rating, and ri represents the actual
rating.

4.2. Experiment design and result analysis

In this article, the experiment is designed for comparing our
proposed HMFwith BMF proposed in [11], and the hardware envi-
ronment of our experiments is a computerwith Intel PentiumDual
core CPU, 2.7 GHz dominant frequency, 8G primarymemory. How-
ever, the parameters should be determined before the comparison.
Table 3 shows the details of the parameters to be determined.

In Table 3, η, λ and N are the three basic parameters in SGD
for matrix factorization. Through simple substitution, the results
are satisfactory while η = 0.001, λ = 0.1, and N = 100. And
the others are determined with the following determination of
optimum parameters. ρ, K , α and β are only used in HMF, and we
determined one parameter through fixing other three ones.

1. M: Both in BMFandHMF,M is expected to bedetermined. Based
on the definition of loss function of BMF in [11], we evaluate
RMSE with M = [5, 10, . . . , 30, 35]. As shown in Fig. 2(a), it
is obvious that when M = 15, RMSE is minimum. Hence, the
number of latent factors in HMF is determined to be 15 either.

2. ρ: We set K = 20, α = 0.1, β = 0.1, and try to minimize
RMSE with ρ = [0, 0.1, . . . , 0.9, 1]. In particular, ρ = 0
means to directly use emotional offset to predict rating, while
ρ = 1 means to directly original rating. As shown in Fig. 2(b),
which indicates that the weight of emotional offset should
be relatively smaller than original rating, because the original
rating is usually submitted after serious consideration and it can
represent adequately user review.

3. K : We substitute ρ = 0.7 and set α = 0.1, β = 0.1. Fig. 2(c)
illustrates the experimental results for RMSE calculation with
K = [10, 20, . . . , 60, 70] that RMSE is minimized when K =

30. That is because if K is too small, the topic distributions
of user preference and doctor feature cannot be represented
sufficiently in HMF. Conversely, the convergence rates of HMF
is too low to minimize RMSE.

http://www.yelp.com/dataset_challenge/
http://www.nltk.org/
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(a) Determination of M . (b) Determination of ρ.

(c) Determination of K . (d) Determination of α and β .

Fig. 2. Determination of optimum parameters.
Table 4
Comparison between HMF, BMF, User-based and Item-based CF.

RMSE M
5 10 15 20 25 30 35

Item-based CF 1.561 1.561 1.561 1.561 1.561 1.561 1.561
User-based CF 1.562 1.561 1.561 1.561 1.561 1.561 1.561
BMF 1.254 1.253 1.252 1.252 1.253 1.254 1.254
HMF 1.248 1.246 1.244 1.245 1.246 1.248 1.249

4. α and β: According to the representation, we try to find the
optimum of α, β ∈ [0, 1] by grid search [22], and Fig. 2(d)
shows that RMSE is minimized when α = 0.1, β = 0.1. It
indicates that theweights of user preference and doctor feature,
which are expected to revise BMF for more accurate prediction,
should be relative small.

With determined optimum parameters, RMSE of HMF is
lower than that of BMF which means HMF-based iDoctor
based can provide more accurate recommendation. Furthermore,
considering the similarity between the number of latent factors in
matrix factorization (i.e. M) and the number of neighborhood in
collaborative filtering (CF) which is one of the most representative
techniques used by recommendation systems, item-based CF and
user-based CF are available to be involved into the comparison. As
shown in Table 4, RMSE of HMF is significantly lower than that of
othermodels, and it proves that iDoctor can providemore accurate
doctor recommendation.
5. Conclusions

It is challenging to address the problem that user choose
doctor online without sufficient personalized and personalized
instruction. To solve the problem, proposed iDoctor to (1) discover
emotional rating from user reviews to revise user original rating;
(2) discover topic distributions of user preference and doctor fea-
ture to improve conventionalmatrix factorization. Our experiment
results proved that the prediction of proposed HMF is better than
BMF, item-based CF, and user-based CF, and iDoctor can provide
considerable accurate recommendation. In our future work, we
plan to take the time-varying possibility of user preferences into
account and import data from social networks to further increase
the recommendation accuracy, and try to develop a general system
like iDoctor to providemore personalized, professionalized andob-
jective recommendation.
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