
Adaptive VM Management with Two Phase Power Consumption
Cost Models in Cloud Datacenter

Dong-Ki Kang1 & Fawaz Al-Hazemi1 & Seong-Hwan Kim1
& Min Chen2

&

Limei Peng3 & Chan-Hyun Youn1

Published online: 31 March 2016
Springer Science+Business Media New York 2016

Abstract As cloud computing models have evolved from
clusters to large-scale data centers, reducing the energy con-
sumption, which is a large part of the overall operating ex-
pense of data centers, has receivedmuch attention lately. From
a cluster-level viewpoint, the most popular method for an
energy efficient cloud is Dynamic Right Sizing (DRS), which
turns off idle servers that do not have any virtual resources
running. To maximize the energy efficiency with DRS, one of
the primary adaptive resource management strategies is a
Virtual Machine (VM) migration which consolidates VM in-
stances into as few servers as possible. In this paper, we pro-
pose a Two Phase based Adaptive Resource Management
(TP-ARM) scheme that migrates VM instances from under-
utilized servers that are supposed to be turned off to

sustainable ones based on their monitored resource utilizations
in real time. In addition, we designed a Self-Adjusting
Workload Prediction (SAWP) method to improve the forecast-
ing accuracy of resource utilization even under irregular de-
mand patterns. From the experimental results using real cloud
servers, we show that our proposed schemes provide the su-
perior performance of energy consumption, resource utiliza-
tion and job completion time over existing resource allocation
schemes.

Keywords Cloud computing . Virtual machine migration .

Dynamic right sizing . Energy saving

1 Introduction

In modern cloud data centers, resource allocation with high
energy efficiency has been a key problem because the operat-
ing cost from energy consumption has increased in recent
years. According to an estimation from [1], the cost of power
and cooling has increased 400 % over 10 years, and 59 % of
data centers identify them as key factors limiting server de-
ployments. Consequentially, challenges from energy con-
sumption and cooling have led to a growing push to achieve
an energy efficient design for data centers. At the data center
level, a promising technology called Dynamic Right Sizing
(DRS) to save energy dynamically adjusts the number of ac-
tive servers (i.e., servers whose power is switched on) in pro-
portion to the measured user demands [2]. In DRS, energy
saving can be achieved by enabling idle servers that do not
have any running VM instances to go into low-power mode
(i.e., sleep or shut down). In order to maximize the energy
efficiency via DRS, one of the primary adaptive resourceman-
agement strategies is VM consolidation in which running VM
instances can be dynamically integrated into the minimal

* Chan-Hyun Youn
chyoun@kaist.ac.kr

Dong-Ki Kang
dkkang@kaist.ac.kr

Fawaz Al-Hazemi
fawaz@kaist.ac.kr

Seong-Hwan Kim
s.h_kim@kaist.ac.kr

Min Chen
Minchen2012@hust.edu.cn

Limei Peng
auroraplm@ajou.ac.kr

1 School of Electrical Engineering, KAIST, Daejeon, South Korea
2 School of Computer Science and Technology, Huazhong University

of Science and Technology, Wuhan 430074, China
3 Department of Industrial Engineering, Ajou University,

Suwon, South Korea

Mobile Netw Appl (2016) 21:793–805
DOI 10.1007/s11036-016-0690-z

number of cloud servers based on their resource utilization
collected by a hypervisor monitoring module [3]. That is,
running VM instances on under-utilized servers, which are
supposed to be turned off, could be migrated to power-
sustainable servers. However, it is difficult to efficiently man-
age cloud resources because cloud users often have heteroge-
neous resource demands underlying multiple service applica-
tions which experience highly variable workloads. Therefore,
inconsiderate VM consolidation using live migration might
lead to undesirable performance degradation due primarily
to switching overheads caused by the migration and by turn-
ing off servers on [4]. Running service applications with reck-
less VM migration and DRS execution could encounter seri-
ous execution time delays, increased latency or failures [5]. As
a result, a careful resource management scheme that considers
switching overheads is necessary to reduce efficiently the en-
ergy consumption of cloud servers while ensuring acceptable
Quality of Service (QoS) based on Service Level Agreements
to cloud users [6, 7].

In this paper, we propose a Two Phase based Adaptive
Resource Management (TP-ARM) scheme to address the
above challenges for cloud datacenters. The energy consump-
tion model based on TP-ARM was formulated with a perfor-
mance cost (reputation loss) caused by an increased delay
from downsizing active servers, by an energy costfrom keep-
ing particular servers active, and by a cost incurred from
switching off servers on. Subsequently, we designed an auto-
mated cloud resourcemanagement system called the Adaptive
Cloud Resource Broker (ACRB) system with the TP-ARM
scheme. Moreover, we introduced our novel prediction meth-
od called Self-Adjusting Workload Prediction (SAWP) to in-
crease the prediction accuracy of users’ future demands even
under unstatic and irregular workload patterns. The proposed
SAWP method adaptively scales the history window size up
or down according to the extracted workload’s autocorrela-
tions and sample entropies which measure the periodicity
and burstiness of the workloads [8]. To investigate the perfor-
mance characteristics of the proposed approaches, we con-
ducted various experiments to evaluate energy consumption,
resource utilization and completion time delay by live migra-
tion and DRS execution on a real testbed based on Openstack
which is a well-known cloud platform using KVM hypervisor
[9]. Through meaningful experimental results, we found that
our proposed TP-ARM scheme and SAWP method provide
significant energy savings while guaranteeing acceptable per-
formance required by users in practice.

2 Proposed adaptive cloud resource brokering
system

In this section, we discuss the architecture of the automated
Adaptive Cloud Resource Brokering (ACRB) system. Our

considered cloud environment including ACRB, which sup-
ports deploying a resource management scheme in order to
migrate VM requests and adjusts the number of active servers
according to the workload level, is depicted in Fig. 1. There
are m physical hosts and n VM requests in the cloud
datacenter. In the cloud datacenter, the information on re-
source utilization is collected through KVM hypervisor based
monitoring modules into the Resource Monitoring DB mod-
ule, and reported to the ACRB which is responsible for solv-
ing the migration of allocated VM requests and sizing the
datacenter. The ACRB has two modules: the TP-ARM mod-
ule and the SAWP Manager. The TP-ARM module includes
the VMMigration Manager and the DRSManager. In the first
phase, the VMMigration Manager is responsible for selecting
the appropriate VM requests to be migrated based on the mea-
sured resource utilization level. We describe the metrics for
determining the VM request migration in detail in section 4. In
the second phase, the DRSManager is responsible for finding
the optimal number of active servers in the cloud datacenter.
The DRS plan derived by the DRS Manager based on the
amount of submitted VM requests and the measured resource
utilization from each VM request is delivered to the
Datacenter Manager, and the determined percentage of idle
servers are powered off. The SAWP Manager is responsible
for adjusting the window size of historical data adaptively in
order to predict the future demand of VM requests. The
SAWP Manager is able to achieve the exact prediction of
future demands even under varied workload levels by consid-
ering the periodicity and the fluctuation of the historical data.
The owner of the cloud datacenter has to minimize the costs
for resource operations while boosting the benefits which can
increase based on the good reputation of the observed QoS of
the cloud services.

In this paper, our ACRB tries to find a resource manage-
ment solution to minimize the total cost of resource operations
including two sub cost models: the energy consumption cost
and the performance reputation cost. From the perspective of
the energy consumption cost, the VM Migration Manager
tries to maximize the resource utilization of each physical host
by consolidating running VM requests based on the whole
offered load measured through the Libvirt VMMonitor mod-
ule attached to each host. The Libvirt VM Monitor module
gauges the utilization of resources such as CPU, memory, and I/
O bandwidth in order to check whether whole hosts are
overloaded [10, 11]. VM requests on overloaded hosts are pref-
erablymigrated to other hosts which have enough extra resource
capacity to accommodate newly allocated VM requests. The
DRS Manager sends the shutdown messages to servers which
have to be powered off, while it sends magic packets to the
ones which have to be powered on again. Obviously, the tran-
sition of servers from sleeping mode to active mode (aWake
transition) requires additional energy consumption (note that
the transition overhead from active to sleep (aSleep transition)

794 Mobile Netw Appl (2016) 21:793–805

can be negligible because it requires only a short time to be
carried out compared to the aWake transition). Therefore, it is
clear that frequent aWake transitions have to be discouraged in
order to minimize unnecessary energy consumption. To sim-
plify our model, we assume that the aSleep transition causes
no additional energy consumption (in fact, it requires non-zero
energy consumption). In terms of the performance reputation
cost, the VMMigration Manager tries to decentralize running
VM requests over multiple physical hosts in order to avoid
QoS deterioration caused by VM interference. In cloud
datacenters, the VM co-location interference is the key factor
that makes servers undergo severe performance degradation
[12, 13]. VM co-location interference is caused by resource con-
tention which is reflected mainly by the number of co-located
VM instances and the resource utilization of them. Briefly,
VM co-location interference becomes larger as more VM in-
stances are co-located on a common server, and subsequently,
higher resource utilization occurs. Therefore, VM requests
have to be scattered in order to avoid performance degradation
byVM co-location interference as best as possible. Because of
the complexity of the optimization for resource management
in large-scale cloud datacenters, our TP-ARM scheme adopts
a metaheuristic based on GA to obtain a near optimal solution
for VM migration to achieve energy savings and QoS assur-
ance in a cloud datacenter.

3 Proposed model for cost optimization of TP-ARM
in the cloud

In this section, we introduce an energy cost model and perfor-
mance reputation cost model based on our proposed TP-ARM
scheme including VM live migration and DRS execution in
the ACRM.

3.1 Workload cost model for phase 1: VM migration

In general, VM requests have heterogeneous workloads in
cloud datacenters. There are three types of VM request work-
loads: CPU, block I/O, and network I/O intensive workloads.
The CPU intensive workloads such as scientific applications,
high-definition video compression or big data analysis should
be processed within an acceptable completion time deter-
mined by the cloud service users. The block I/O intensive
workloads such as huge engineering simulations for critical
areas include astrophysics, climate, and high energy physics
which are highly data intensive [14]. These applications contain
a large number of I/O accesses where large amounts of data
are stored to and retrieved from disks. Network I/O intensive
workloads such as Internet web services and multimedia
streaming services have to be processed within a desirable
response time according to their application type [10, 15]. Each

Fig. 1 Adaptive Cloud Resource Brokering (ACRB) system including TP-ARM module and SAWP manager for green cloud datacenters

Mobile Netw Appl (2016) 21:793–805 795

VM request requires different resource utilizations according to
their running applications. We categorized the resource utiliza-
tion of running VM requests on a physical host in a cloud
datacenter into two parts in this paper, the Flavor Utilization
(FU) and the Virtual Utilization (VU). FU represents the ratio
of the resource flavor (i.e., the specification of the resource
requirement) of a VM request to the resource capacity of the
physical host. VU represents the resource utilization of an
assigned virtual resource. The Flavor Utilization FUj, i

k of a
VM request i on a physical host j in the resource component k
and the Virtual Utilization VUj, i

k of the VM request i on the
physical host j in the resource component k are given by

FUk
j; i ¼

flvki
rcpkj

ð1Þ

RUk
j; i ¼ FUk

j; i⋅VU
k
j; i ð2Þ

where flvi
k is the flavor of the VM request i in the resource

component k; rcpj
k is the resource capacity of the physical host

j in the resource component k, and RUj, i
k is the actual resource

utilization of the VM request i on the physical host j in the
resource component k; therefore, it describes the practical
workload in the resource component k. Note that the FU of
the VM request can be determined through its attached service
description to the ACRM in advance, while the VU can only
be measured by the internal monitoring module in the cloud
server during the running duration of the VM request. In the
period t, the VM migration plan is designed according to the
FU of the submitted VM requests at period t and the measured
RU of each host in the past history t−1. The VM migration
plan should satisfy the following constraints:

flvki ≤S
t
k ið Þ; ∀i; k; t ð3Þ

flvki ≥0; ∀i; k ð4Þ

Ststate ið Þ ¼ 1; ∀i; t ð5Þ

where Sk
t (i) denotes the remain capacity of resource k in the

physical server S which is assigned to the VM request i at time
period t, and Sstate

t (i) represents the state of the physical server S
which is assigned to the VM request i at time period t. If the
server S is in the sleep mode, then Sstate

t (i) = 0, otherwise,
Sstate
t (i) =1 (i.e., it is in the active mode). Constraint (3) repre-
sents that the total requirements of the resource capacity of the
newly allocated VM requests and migrated VM requests at
time period t cannot exceed the resource capacity provided
by their assigned physical server S. Next, we consider a VM
performance reputation which is determined based on the RU
of each physical server. The VM co-location interference im-
plies that the virtualization of the cloud supports resource iso-
lation explicitly whenmultiple VM requests are running simul-
taneously on a common PM however, it does not mean the

assurance of performance isolation between VM requests in-
ternally. There is a strong relationship betweenVM co-location
interference and both of the number of co-located VMs and
their resource utilization in the PM. As the number of co-
located VM requests increase and the RU of the VM requests
becomes larger, VM co-location interference becomes more
severe. The VM Migration Manager selects server candidates
to be migrated based on the amount of RU for each physical
server. To achieve this, the RU size of each server is measured
through an internal monitoring module, and the VMMigration
Manager checks whether they exceed the predetermined RU
threshold value RUthr. In servers which have an RU size over
the RUthr, they are considered as candidates for migration
servers during the next period. After the migration servers are
chosen, the VM requests to be migrated and their destination
servers are determined based on the performance reputation
cost model. We propose the objective function of the perfor-
mance reputation cost Crepu

t at time Crepu
t given by

Ct
repu ¼ ρintf

X
∀ j

X
∀k

ωk Pℳt
j

���
���⋅

X Pℳt
jj j

i¼1
RUk

idxtj; i

RUk
thr

−1

0
BB@

1
CCA

þ

þρmigTmig

X
∀ j

Pℳt−1
j

���
���− Pℳt

j

���
���

���
���

ð6Þ

where (x)+ =max(x, 0), and ρintf and ρmig are the price
constants of the VM interference cost and VM migration
cost, respectively. We use Tmig to denote the processing
time for the VM migration. The first term in the right hand
of Eq. (6) represents the following: as the number of concur-
rent running VM requests on a physical server increases, the
number of users experiencing undesirable performance degra-
dation also increases. The second term represents the follow-
ing: as the number of migrated VM requests increases, the
migration overhead is also increases. Therefore, a migration
plan needs to be found that satisfies both avoiding unnecessary
migration overhead and minimizing performance reputation
degradation.

3.2 Energy consumption cost model for phase 2: DRS
procedure

To achieve a power-proportional cloud datacenter which con-
sumes power only in proportion to the workload, we consid-
ered a DRS procedure which adjusts the number of active
servers by turning them on or off dynamically [2].
Obviously, there is no need to turn all the servers in a cloud
datacenter on when the total workload is low. In the DRS
procedure, the state of servers which have no running appli-
cations can be transited to the power saving mode (e.g., sleep
or hibernation) in order to avoid wasting energy. At each time
t, the number of active servers in the cloud datacenter is de-
termined by a DRS procedure plan according to the workload

796 Mobile Netw Appl (2016) 21:793–805

of the allocated VM requests. In order to successfully deploy
the DRS procedure onto our system, we considered the
switching overhead for adjusting the number of active servers
(i.e., for turning servers in sleep mode on again). The
switching overhead includes the following: 1) additional en-
ergy consumption from the transition from a sleep to active
state (i.e., awaken transition); 2) wear-and-tear cost of the
server; 3) fault occurrence by turning servers in sleep mode
[2]. We considered the energy consumption as the overhead
from DRS execution. Therefore, we define the constant
PaWake to denote the amount of energy consumption for
the aWake transition of the servers. Then, the total en-
ergy consumption Cenergy

t of the cloud datacenter at time
t is given by

Ct
energy ¼ ρpPactive

X
∀ j

Pℳt
j

���
���

� �−

þ ρpPaWakeT switch

X
∀ j

Pℳt
j

���
���

� �−
−
X

∀ j
Pℳt

j

���
���

� �−� �þ

ð7Þ

where (x)−=min(x, 1). We use ρp to denote the constant of
the power consumption price, and Pactive and PaWake are the
amount of power consumption for the active mode and the
aWake transition of the server, respectively. Tswitch is the
time requirement for the aWake transition. The first term
on the right side of Eq. (7) represents the energy consump-
tion for using servers to serve VM requests allocated to all
the physical servers in the cloud datacenter at time t, and the
second term represents the energy consumption for the
awaken transition of sleeping servers. Especially, the second
term implies that a frequent change in the number of active
servers could increase an undesirable waste of energy. Note
that the overhead by the transition from the active to the
sleep state (i.e., asleep transition) is ignored in our model
because the time required for the asleep transition is relative-
ly short compared to the one for the awaken transition. The
purpose of our algorithm is to achieve a desirable VM mi-
gration and DRS procedure plan that are energy efficient as
well as a QoS aware resource management at each period
iteratively. At period t−1, the proposed TP-ARM approach
aims to minimize the cost function in Eq. (8) by finding
the solution Pℳt as follows,

minimizePℳt Ct
total ¼ Ct

repu þ Ct
energy

subject to: Eq 3ð Þ; 4ð Þ and 5ð Þ
ð8Þ

To solve the objective cost function in Eq. (8), we prefer
a well-known evolutionary metaheuristic called the Genetic
Algorithm (GA) in order to approximate the optimal plan P
ℳt at each period because Eqs. (6) and (7) have non-linear
characteristics. In next section, our proposed TP-ARM with
the VM migration and DRS procedure is introduced in
detail.

4 Heuristic algorithms for the proposed TP-ARM
scheme

In this section, we describe heuristic algorithms for the proposed
TP-ARM scheme discussed in Algorithms 1, 2, and 3 shown in
Figs. 2, 3, and 4. First, the process of VM migration in the TP-
ARM approach includes the following four steps: 1) monitor and
collect the resource utilization data on VM requests for each
physical server through the attached Libvirt based monitoring
tools; 2) go step 3 if the average utilization of all the active servers
are significantly low (i.e., below the predefined threshold), oth-
erwise go to step 4; 3) choose active servers which are supposed
to be turned off, migrate all the VM instances on them to other
servers and trigger DRS execution; 4) determine the number of
sleeping servers which are supposed to be turned on and send
magic packets to them forwake-up if the average utilization of all
the active servers are significantly high (i.e., above the predefined
threshold), otherwise maintain the current number of active
servers. Algorithm 1 shows the procedure for Phase 1:VM mi-
gration in the TP-ARM scheme. From line 00 to 06, the resource
utilization RU of all the VM requests on the physical servers in
the cloud datacenter is measured by the Libvirt API monitoring

module. The average resource utilization RUk at all resource

components k is calculated in line 07. If the RUk is below the

predetermined RUk
thrlow

at all the resource components, then the

optimal VM migration plan Pℳt is derived, and the algorithm

is finished. Otherwise, if the RUk exceeds the predetermined

RUk
thrhigh

, then Algorithm 2 for the DRS procedure is triggered.

Algorithm 2 shows the procedure for Phase 2: DRS in the
TP-ARM scheme. In line 00, the history window size ϖ′ is
determined by the ACRM through Algorithm 4: the SAWP
scheme that is described in next section. In line 02, we calculate
the signφ and the angle ξ of the slope of the historical resource
utilization curve from the current time t − 1 to the time t−ϖ′. If
φ≥0 (i.e., the resource utilization is increased), and then, we
get the coefficient α based on αlarge ⋅ξ (αlarge>αsmall) to adap-
tively react to the large workload level in the cloud datacenter.
Otherwise, if φ<0 (i.e., the resource utilization is decreased),
then we getα based onαsmall ⋅ξ to maximize the energy saving
of the cloud datacenter. In line 08, we determine the number of
servers to be in active mode in the next period.

Algorithm 3 describes the GA for the TP-ARM scheme in
detail. poph is a population with size P (even number) at the hth

generation. hmax is the maximum of the GA iteration count. In
line 03, f(⋅) is a fitness function of the total cost with two param-
eters, candidate solution Pℳh; i and the previous solution P
ℳt−1 at time t−1. From line 04 to 06, the two candidate solu-
tions are iteratively chosen randomly from pop to generate off-
springs by crossover until there are no remaining unselected
solutions in pop. From line 07 to 08, the fitness function values
of each offspring are calculated similar to line 03. In line 09, all

Mobile Netw Appl (2016) 21:793–805 797

the parent solutions in pop and generated offsprings are sorted in
ascending order for their corresponding fitness function values.
In line 10, the next population including only P solutions that
achieve good performance from the union of the original pop and
derived offsprings is generated to improve the quality of the final
solution. From line 11 to 12, to reduce the time complexity of the
GA procedures, when we encounter the first solution that has a
fitness function value below the predetermined fitness threshold
value fvthr, it counts as a final solution for the next period, and the
algorithm is finished. In line 14, if we cannot find a solution that
satisfies fvthrwhen the iteration count reaches hmax, thenwe select
a solution that has a minimum fitness function value in the pop-
ulation which satisfies the conditions in Eqs. (3), (4) and (5) as a
final solution for the next period. If there are no solutions to

satisfy all the constraints, then we just preserve the current re-
source allocation vector shown from line 15 to 16. In the popu-
lation of a GA, mutations are often applied in order to include
new characteristics from the offsprings that are not inherited traits
from the parents [16]. We did not consider mutations in our GA
in this paper; however, it can be used to improve the quality of
the GA for the TP-DRM in future work.

5 Self-adjusting workload prediction scheme

Figure 5 describes the procedure of the proposed SAWP algo-
rithm in ACRB. The irregularity function g(ε, δ) repre-
sents a level of unpredictability for future resource

Algorithm 1. Phase 1: VM migration in TP-ARM

Input : the VM requests allocation of each server ℳ , ∀

Output : the VM migration plan ℳ , ∀

00: for each , ∀

01: for each

02: for each resource component

03: measure resource utilization of the VM request with

04: end for
05: end for
06: end for

07: calculate the average resource utilization at all resource components

08: if then

09: derive the VM migration plan based on Eq.(8) through Algorithm 3.

10: else if then

11: go to Algorithm 2.

12: end if

Fig. 2 Phase 1: VM migration procedure consolidates running VM instances from the low-utilized servers to others in order to maximize the energy
saving of the cloud datacenter

Algorithm 2. Phase 2: DRS procedure in TP-ARM

Input : the average resource utilization
the VM requests allocation of each server
the historical data of resource utilization in

Output : the set of powered-off servers to be turned on at time .

00: determine the boundary size of the history window, () through Algorithm 4.

01: estimate the sign and angle ξ of an slope of the historical resource utilization

curve from to .

02: if then
03: α = α ∙ ξ

04: end if
05: if then
06: α = α ∙ ξ

07: end if
08: determine the number of sleeping servers supposed to be turned on according

to

09: derive the set of powered-off servers to be turned on at time

Fig. 3 Phase 2: DRS procedure turns sleeping servers on in order to react the increased workload level

798 Mobile Netw Appl (2016) 21:793–805

utilization where ε is its fluctuation value (i.e., levels of
instability and aperiodicity), and δ is its burstiness value (i.e.,
levels of sudden surge and decline), and both values are cal-
culated based on [8].

According to the predetermined threshold values gthr
high

and gthr
low with g(ε, δ), the history window size ϖ ' is adap-

tively updated at each prediction process. A relatively long
history window size is not suitable to react to recent chang-
es in the workload but is tolerant to varied workload

patterns over a short time while a short history window
size is favorable to efficiently respond to the latest work-
load patterns but is not good for widely varying workloads.
Consequently, the SAWP algorithm generally outperforms
traditional prediction schemes during drastic utilization
changes from various cloud applications because it is able
to cope with temporary resource utilizations (i.e., does not
reflect overall trends) by adjusting the history window size
ϖ '.

Algorithm 3. GA for searching VM migration plan in TP-ARM

Input : the set of VM requests allocation of whole servers ℳ at time
Output : the set of VM requests migration plan, ℳ at time

00: initialize = , ℳ , … , ℳ , ,

and even number

01: while ℎ ≤ ℎ

02: for each

03:

04: while

05: ← select parents randomly from

06: =∪ crossover

07: for each

08:

09: sort in

ascending order of solutions' corresponding

10:

11: if then

12: and exit

13: ℎ + +

14: = argmin (3), (4), (5)

15: if ℳ = ∅ then
16:

Fig. 4 GA for VM migration determines the appropriate VM requests supposed to be migrated in order to maximize the energy saving of the cloud
datacenter

Algorithm 4. Self Adjusting Workload Prediction scheme

Input : the historical data of resource utilization in
Output : the boundary size of history window

00:

01: analyze the historical data of resource utilization from to

02: extract the fluctuation size and the burstness value based on [6]

03: if () then

04: increase based on
()

05: end if

06: if () then

07: decrease based on
()

08: end if

09: predict the future demand based on from to

Fig. 5 SAWP scheme is able to increase the accuracy of the prediction even under the dynamic workload

Mobile Netw Appl (2016) 21:793–805 799

6 Experimental results and discussion

In our experiments, we measured various metrics which affect
the parameter decision for our proposed algorithms. To this
end, we established five cluster servers as a cloud platform,
one server for ACRB with a Mysql DB system, a power mea-
suring device from Yocto-Watt [17] and a laptop machine
called the VirtualHub for collecting and reporting information
on the measured power consumption shown in Fig. 6. The
hardware specification of each server for the cloud compute
host is as follows: an Intel i7-3770 (8-cores, 3.4Ghz), 16 GB
RAM memory, and two 1 Gbps NICs (Network Interface
Cards). In order to measure efficiently the power consumption
of the cloud cluster server, we used a power measuring device
model called YWATTMK1 by Yocto-Watt. This model has a
measurement unit of 0.2 W for AC power with an error ratio
of 3 % and 0.002 W for the DC power with an error ratio of
1.5 %. The VirtualHub collects information on power con-
sumption from YWATTMK1 through the Yocto-Watt Java
API and reports it to the power monitoring table of the
Mysql DB system in the ACRB periodically. The dynamic
resource utilizations by each VM instance are measured via
our developed VM monitoring modules based on the Libvirt
API and are sent to the resource monitoring table of the Mysql
DB system periodically. In addition, a SATA 3 TB hard disk
called the G-drive was deployed as a NFS server in our testbed
for live migration [18]. We adopted Openstack kilo version

which is a well-known open source solution based on KVM
Hypervisor as a cloud platform in our testbed. Finally, we used
Powerwake package [19] to turn remotely off servers on via
Wake on Lan (WOL) technology for DRS execution. In
Table 1, we show the average power consumption and re-
source utilization of two running applications: Montage
m106-1.7 projection and ftp transfer. Montage project is an
open source based scientific application, and it has been in-
voked by NASA/IPAC Infrared Science Archive as a toolkit
for assembling Flexible Image Transport System (FITS) im-
ages into custommosaics [20, 21]. The m106-1.7 projection in
Montage is a cpu-intensive application while the ftp transfer is
a network-intensive one. Therefore, the running of m106-1.7
causes a power consumption of about 75 Wh and a cpu utili-
zation of about 15 % whereas the power consumption by ftp
transfer for a 1.5 GB test.avi file is about 60 Wh, and the
network bandwidth usage is about 3.7Mbps. That is, the cpu
usage is the main part that affects the power consumption of
server. In terms of DRS execution, the power consumption by
an off server is about 2.5 Wh (note that this value is not zero
because the NIC and some its peripheral components are still
powered on to maintain the standby mode to receive the magic
packets from the Powerwake controller) while the asleep and
awaken transition procedures, which cause the switching
overhead for DRS, require a power consumption of about
80 Wh to turn the active servers off or to turn off servers on,
respectively.

Fig. 6 Experimental Environment

800 Mobile Netw Appl (2016) 21:793–805

The asleep transition procedure is trivial because it requires
a short time (i.e., 5~7 s) to complete even though its power
consumption is considerable whereas the awaken transition
procedure requires a relatively long execution time (i.e., more
than 1 min) and should be considered carefully. The overhead
for the awaken transition would be a more serious problem in
practice because its required execution time is generally far
longer (i.e., above 10 min) for multiple servers of racks in a
datacenter. Therefore, it is essential to consider the switching
overhead for awaken transition to reduce efficiently the re-
source usage cost of the datacenter. Figure 7 shows the addi-
tional energy consumption overhead of a single physical serv-
er from the DRS execution with respect to the asleep transition
(i.e., from the active mode to the sleep mode) and the awaken
transition (i.e., from the sleep mode to the active mode). Note
that the asleep transition requires a relatively short processing
time of about 7 or 8 s and causes an additional energy con-
sumption of about 20 % compared to the idle state of the
server, while the awaken transition needs 60 or 90 s to be
carried out. Although not included in this paper, we also ver-
ified that some of the HP physical servers in our laboratory
required more than 10 min to be turned on. We expect that
physical servers in a real cloud datacenter require tens of mi-
nutes or hundreds of minutes to get back from the sleep mode
to the active mode. Moreover, the aWake transition causes an
additional energy consumption of about 40 % on average
compared to the idle state of a server. These results imply that
the frequent DRS executionmight cause the degradation of the
energy saving performance in a cloud datacenter.

Our proposed TP-ARM scheme is able to avoid the unnec-
essary energy consumption overhead by the awaken transition
through the cost model by considering the DRS transition
overhead shown in Eq. (7). Figure 8 shows the resource utili-
zation and the power consumption measured by the Libvirt
API monitoring module and Yocto-Watt power measuring de-
vice. VM request instance-10 runs m101-1.0 mProj, instance-
0f runs m108-1.7, and instance-0c runs the streaming server
with the 180 MBmovie file. Figure 8 (a) ~ (c) shows that their
resource utilization is consistent with the resource intensive
characteristic of their running workload.

Figure 8d shows the different energy consumptions accord-
ing to each workload type. The energy consumption of the
physical server is 60 Wh in the idle state; it is about 82 Wh
when runningm101-1.0 and 95Whwhen running both m101-
1.0 and m108-1.7, while the streaming server just causes an
additional energy consumption of about 2 Wh. As mentioned
in section 3, the main part of the resource components affect-
ing the power consumption in a physical server is the CPU
resource, and the effects of other components such as the
memory, storage, and network interface cards are negligible
in general. These results are consistent with the ones in
Table 1.

Therefore, these results imply that the energy consumption
can be different according towhich resource component has high
utilization. Our proposed workload cost model of the TP-ARM
scheme considers different weight values for each resource com-
ponent in order to derive the practical cost of the resource man-
agement. Figure 9 shows the performance of the CPU utilization
for the VM live migrationbetween the source machine
(kdkCluster2) and the destination machine (kdkCluster1).
There are VM request instances, such as running instance-33
and 34, which execute the compression of video files 5 GB
and 4 GB in size, respectively. Instance-33 executed the process
ofm101-1.6mProj at 12:40:14 local time and startedmigration to
the kdkCluster1 at 12:44:00 local time. The migration of
instance-33 was completed by 13:24:30 local time, and its exe-
cution of m101-1.6 mProj ended at 13:47:16. Namely, the com-
pletion time of m101-1.6 mProj at instance-33 was 67 min in
total, and itsmigration timeswere over 30min. If we consider the
time to complete m101-1.6 mProj in the case of no VM live
migration, it is forecasted to be around 10 min. We can see that

Fig. 7 Power Consumption Overhead from DRS execution of the test
server with respect to the asleep and awaken transition

Table 1 Average power consumption and resource utilization by Montage and ftp transfer

Host state Power Consumption (Wh) CPU utilization Mem utilization Net bandwidth

Idle 55 Wh 1.5 % 3 % 20 Kbps (bytes)

Active Montage m106-1.7 (projection) 75 Wh 15 % 3.7 % 20 Kbps (bytes)

test.avi downloading (ftp, 1.5GB) 60 Wh 2 % 3.7 % 3.7 Mbps (bytes)

aSleep (to Power Off) 70–80 Wh (5–7 s) 1.8 % (5–7 s) 3 % (5–7 s) 20 Kbps (bytes)

Power Off (hibernating) 2.5 Wh

aWake (from Power Off) 78 Wh (50s-1min)

Mobile Netw Appl (2016) 21:793–805 801

there exist quite big overheads in VM live migration. In addition,
VMmigration shows some problems in power consumption.We
considered cost models to identify an efficient migration scheme
which was defined in Eq. (6). Figure 10 shows the test environ-
ments and the operation of the VMmigration when the proposed
TP-ARM schemes are applied to the test cloud systems with
heterogeneous applications and test programsincluding m108-
1.7, pbzip2, and netperf. From the experiments, we obtained
interesting results in the comparison of the utilization perfor-
mance, which examined the CPU utilization monitoring results
and the measured power consumption, respectively, shown in
Fig. 11. From the results, we found rapidly changing instants of

utilization when the cloud brokering system considered the pow-
er consumptions for each running application under cloud data
center environments. Additionally, the test set ‘netperf’, a net-
work intensive workload of a test cloud system (e.g.,
kdkCluster4 with instance-35) in Fig. 11d, showed very low
performance in CPU utilization. It was enough to satisfy the
threshold value to run the VM migration efficiently. And then,
the proposed TP-ARM algorithm adjusts the VMmigration pro-
cedure to reduce the power consumption sufficiently. Basically,
the TP-ARM is triggered to migrate instance-35 to another sys-
tem kdkCluster2; thereafter, it changes the kdkCluster’s sleeping
mode in advance. Next, because instance-34 of the kdkCluster

Fig. 8 Libirt API monitoring module shows the results of resource utilization of running VM requests in the kdkCluster1 in (a), (b) and (c). Yocto-Watt
module [17] was used to measure the power consumption of the kdkCluster1 as shown in (d)

Fig. 9 Results of CPU utilization of the migrated VM request from (a) a source server:kdkCluster2 to (b) a destination server:kdkCluster1

802 Mobile Netw Appl (2016) 21:793–805

system was running netperf, which generated a very low perfor-
mance of utilization, the TP-ARM also did a migration of the
instance-34 to the kdkCluster2 and transited to the sleepingmode
as well. Therefore, we could expect efficient power consumption
through the change in the sleeping mode of kdkCluster3 and
kdkCluster4, respectively, as well as keeping active modes for
both kdkCluster1 and kdkCluster2. Figure 11 shows the perfor-
mance comparison of the power consumption for the VM mi-
gration and DRS process based on the TP-ARM algorithm, e.g.,
seen in Fig. 10. We can see a performance improvement of
60 Wh each in power consumption after the change in the
sleeping mode in the case of the VM migration requests.
Through the experiments, we verified that the proposed TP-
ARM scheme, which carries out adaptive migration and asleep
transition through real-time monitoring of resource utilization,
has good performance in reducing the power consumption effec-
tively. This study provides good results for achieving an energy

efficient cloud service for users by not increasing QoS degrada-
tion as much.

7 Conclusion

In this paper, we introduced an Adaptive Cloud Resource Broker
(ACRB) with Two Phases based the Adaptive Resource
Management (TP-ARM) scheme for energy efficient resource
management by real time based VM monitoring in a cloud data
center. Our proposed approach is able to reduce efficiently the
energy consumption of the servers without a significant perfor-
mance degradation by live migration and Dynamic Right Sizing
(DRS) execution through a considerate model that considers
switching overheads. The various experimental results based on
the Openstack platform suggest that our proposed algorithms can
be deployed to prevalent cloud data centers. The novel prediction

(a) The schedule of the use case

(b) The illustration of the use case

Fig. 10 Test environments and
operation of the VM migration
when the proposed TP-ARM
schemes are applied for test cloud
servers (e.g., kdkCluster1 ~ 5 in
lab test environments) with het-
erogeneous applications and test
programs, such as m108-1.7,
pbzip2, and netperf. (a) An ex-
ample of test schedule under
cloud testbed environments (b)
Illustration of the VM migration
using two-phase power con-
sumption cost models

Mobile Netw Appl (2016) 21:793–805 803

method called Self Adjusting Workload Prediction (SAWP) is
proposed in order to improve the accuracy of forecasting future
demands even under drastic workload changes.

Especially, we evaluated the performance of our proposed
TP-ARM scheme through various applications such as
Montage, pbzip2, netperf, and the streaming server which

Fig. 11 Performance comparison of CPU utilization using 4 test systems
in lab environments. (a), (b), and (c) show the results of the measured
utilization during the VM live migration in test use case as shown in

Fig. 9. (d) shows utilization of the proposed TP-ARM scheme that was
used in test cloud environments. (e) Measured power consumption of test
cloud systems (e.g., kdkCluster1 ~ 4) in lab cloud test environments

804 Mobile Netw Appl (2016) 21:793–805

have heterogeneous workload demands. Our TP-ARM
scheme could maximize the energy saving performance of
the DRS procedure by Phase 1: VM migration achieves con-
solidated resource allocation under a low workload level.
Moreover, it could ensure the QoS of cloud service users by
Phase 2: the DRS procedure increases adaptively the number
of active servers under a high workload level. Through exper-
iments based on a practical use case, our proposed scheme is
not only feasible from a theoretical point of view but also
practical in a real cloud environment. In future work, we will
demonstrate that our proposed algorithm outperforms existing
approaches for energy efficient resource management through
various experiments based on the implemented system in
practice.

Acknowledgments This work was supported by BThe Cross-Ministry
Giga KOREA Project^ of the Ministry of Science, ICT and Future
Planning, Korea [GK13P0100, Development of Tele-Experience
Service SW Platform based on Giga Media].

References

1. International Data center Corporation, http://www.idc.com
2. Lin M, Wierman A, Andrew LLH, Thereska E (2013) Dynamic

right-sizing for power-proportional data centers. IEEE/ACM
Trans Networking 21(5):1378–1391

3. Xiao Z, SongW, ChenQ (2013) Dynamic resource allocation using
virtual machines for cloud computing environment. IEEE Trans
Parallel Distrib Syst 24(6):1107–1117

4. Beloglazov A, Buyya R (2012) Optimal online deterministic algo-
rithms and adaptive heuristics for energy and performance efficient
dynamic consolidation of virtual machines in cloud data centers.
Concurr Comput: Pract Experience 24:1397–1420. doi:10.1002/
cpe.1867

5. Kang DK, Hazemi FA, Kim SH, Youn CH (2015) Dynamic virtual
machine consolidation for energy efficient cloud data centers. In:
Proc. EAI Int. Conf on Cloud Computing, Oct

6. Kim SH, Kang DK, Kim WJ, Chen M, Youn CH () A science
gateway cloud with cost adaptive VM management for compu-
tational science and applications. to be appeared in IEEE Syst
J, 2016

7. Chen M, Hao Y, Li Y, Lai CF, Wu D (2015) On the computation
offloading Ad Hoc Cloudlet: architecture and service models. IEEE
Commun Mag 53(6):18–24

8. A-Eldin A, Tordsson J, Elmroth E, Kihl M (2013) Workload
classfication for efficient auto-scaling of cloud resources. Umea
University, Sweden

9. Openstack, http://www.openstack.org
10. Chen M, Zhana Y, Hu L, Taleb T, Shena Z (2015) Cloud-based

wireless network: virtualized, reconfigurable, smart wireless net-
work to enable 5G technologies. ACM/Springer Mob Netw Appl
20(6):704–712

11. Chen M, Wen Y, Jin H, Leuna V (2013) Enaling technologies
for future data center networking: a primer. IEEE Netw 27(4):
8–15

12. Xu F, Liu F, Liu L, Jin H, Li B, Li B (2014) iAware: making live
migration of virtual machines interference-aware in the cloud. IEEE
Trans Comput 63(12):3012–3025

13. Gupta D, Cherkasove L, Gardner R, Vahdata A (2006) Enforcing
performance isolation across virtual machines in Xen. In: Proc.
ACM/IFIP/USENIX 2006 Int. Conf. Middleware, Nov

14. Nisar A, Liao WK, Choudhary A (2008) Scaling Parallel I/O
Peformance through I/O delegate and caching system. In: Proc.
ACM/IEEE conf on Supercomputing, Nov

15. Chen M, Zhang Y, Li Y, Mao S, Leung VCM (2015) EMC:
emotion-aware mobile cloud computing in 5G. IEEE Netw 29(2):
32–38

16. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist
multiobjective genetic algorithm:NSGA-II. IEEE Trans Evol
Comput 6(2):182–197

17. YOCTO-WATT, http://www.yoctopuce.com/EN/products/usb-
electrical-sensors/yocto-watt

18. G-Technology, http://www.g-technology.com/products/g-drive
19. PowerWake, http://manpages.ubuntu.com/manpages/utopic/man1/

powerwake.1.html
20. Montage, http://montage.ipac.caltech.edu/
21. Kim WJ, Kang DK, Kim SH, Youn CH (2015) Cost adaptive VM

management for scientific workflow application in mobile cloud. J
Mob Netw Appl, Springer 20(3):328–336

Mobile Netw Appl (2016) 21:793–805 805

