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Abstract—Recognizing and retrieving multimedia content with
movie/TV series actors, especially querying actor-specific videos
in large scale video datasets, has attracted much attention in
both the video processing and computer vision research field.
However, many existing methods have low efficiency both in
training and testing processes and also a less than satisfactory
performance. Considering these challenges, in this paper, we
propose an efficient cloud-based actor identification approach with
batch-orthogonal local-sensitive hashing (BOLSH) and multi-task
joint sparse representation classification. Our approach is featured
by the following: 1) videos from movie/TV series are segmented into
shots with the cloud-based shot boundary detection; 2) while faces
in each shot are detected and tracked, the cloud-based BOLSH
is then implemented on these faces for feature description; 3)
the sparse representation is then adopted for actor identification
in each shot; and 4) finally, a simple application, actor-specific
shots retrieval is realized to verify our approach. We conduct
extensive experiments and empirical evaluations on a large scale
dataset, to demonstrate the satisfying performance of our approach
considering both accuracy and efficiency.

Index Terms—Actor identification, cloud computing, locality-
sensitive hashing, shot boundary detection, sparse representation.

I. INTRODUCTION

W ITH rapid advances in digital technologies, there has
been profound development in videos, especially the

feature movies and TV series. Moreover, the new generation cel-
lular networks with high transmission rate and energy efficiency
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provide a new approach for multimedia wireless communica-
tions, which combine the digital technologies and wireless com-
munications to satisfy the requirement of QoS [1]. In order to
feasibly browse and retrieval these videos, it is very crucial and
urgent to provide efficient and effective techniques for video
analyzing and understanding. Firstly, there are several works fo-
cused on video analyzing in surveillance video, i.e., Ma et al. [2]
built an efficient system for robust and fast people counting un-
der occlusion through multiple cameras. Meanwhile, automatic
actor identification is one of the most important techniques for
video analyzing in broadcast videos, since actor identification
is to label actor in videos with their corresponding names. In a
movie/TV series, the actors are often the most important con-
tents to be indexed, thus actor identification becomes a critical
step in video semantic analysis (Video always refers to movie
and TV series in this paper unless otherwise specified.), i.e., se-
mantic movie index and retrieval, summarization. As mentioned
in [3], [4], recently, multimedia content providers have started
to offer information on cast and characters for TV series and
movies during playback.

Actually, the face recognition is the most common way used
for actor identification. Sang et al. [5] proposed the problem
of faceted subtopic retrieval, which focus on more complex
queries concerning political and social events or issues. Mean-
while, some of the researchers proposed to share aligned faces
in a carefully crafted benchmark face recognition dataset such
as the Labeled Face in the Wild.1 By automatically detecting
faces throughout the video, extracting facial features and then
using these features in a supervised or unsupervised clustering
process, actors can be identified and labeled. Therefore, the ac-
tor identification is generally divided into several steps: video
segmentation, face detection and tracking, face and actor recog-
nition, and actor-specific retrieval.

As has been noted in [6], although it is very intuitive to hu-
mans, automatic actor identification is still tremendously chal-
lenging due to: 1) the lack and ambiguity of available anno-
tations; 2) many other factors, like pose, light and expression,
etc., influent the way a face appeared in a frame; and 3)when
there are many uncontrolled data quality factors, such as low
resolution, occlusion, nonrigid deformation, large motion and
complex background, which make the results of face detection
and tracking unreliable; 4) the efficiency is always a concern
for video processing and analysis, and it is still a unresolved

1[Online]. Available: http://vis-www.cs.umass.edu/lfw/index.html
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problem that how to balance the efficiency and accuracy of
actor identification in videos.

In order to deal with these challenges, in this work, we present
a novel cloud-based actor identification approach with Batch-
Orthogonal Local-Sensitive Hashing (BOLSH) [7] and sparse
representation. Firstly, since there are full of various images as
well as video clips in the Internet for actors, we propose to do
a matching between the faces detected from the video and the
exemplar faces in the gallery set, which have been searched
from the Web. For the second and third challenge, when each
face is detected and tracked, we use the BOLSH method to
provide multi batch features, and then we used the Multi-Task
Joint Sparse Representation and Classification (MTJSRC) [8]
to accurately recognize face tracks. Since the batches is the key
concept in our approach, we renamed the used sparse represen-
tation algorithm as Multi-Batches Joint Sparse Representation
and Classification (MBJSRC) in this paper. And also, the kernel
view of that even achieved more robust performance.

In order to deal with the fourth challenge, we introduce the
Apache Spark2 based cloud computing both for pre-processing
of video segmentation and BOLSH hashing on massive face
images. The cloud-based way can offer high efficiency but also
maintain satisfactory identification performance. Finally, based
on the results of actor identification, face tracks in each shot
will be assigned with actor names, and further application of
actor-specific shots retrieval is also presented.

All in all, compared with previous studies on such topic, the
main contributions of this paper include:

1) The cloud based Spark framework is introduced to accel-
erate the shot boundary detection by distributing processes
on all pixels into a parallel environment.

2) The BOLSH method is used for feature description which
not only reduce the feature dimension but also maintain
the similarity between instances.

3) With BOLSH, we need to hash thousands or more faces
into hash values, which will result in very low efficiency.
However, the batch concept in BOLSH make it easy to do
hashing in parallel with the cloud computing ideas, and
the Spark framework is used to assign the hash processes
into different virtual machines.

4) The MTJSRC algorithm is a robust way for face recog-
nition, and the batches in BOLSH is exactly satisfies the
tasks in MTJSRC. Thus, the Multi-Batches Sparse Repre-
sentation and Classification (MBJSRC) is constructed for
actor identification on face recognition.

II. RELATED WORK

The task of actor identification in a movie/TV-series is typi-
cally accomplished by combining multiple sources of informa-
tion, e.g., image, video and text, under little or even no manual
intervention. However, in movies/TV-series, the names of actors
are not always available, and the appearances of actors vary in
different conditions, which makes it hard to detect, track and
recognize these actors.

2[Online]. Available: http://spark.apache.org/

Over the past two decades, extensive research efforts have
been actively concentrated on this task [6], [9], which detect
actor faces in photos or movies and associates them with cor-
responding names. Besides, there are also several methods us-
ing audio clues or both audio and vision clues, such as [10].
Meanwhile, in our previous work [11], we also proposed a
semi-supervised learning strategy to address celebrity identi-
fication with collected celebrity data. More recently, Tapaswi
et al. [10] presented a probabilistic method for identifying ac-
tors in movies/TV-series, and Bojanowski et al. [12] learned a
joint model of actors and actions in movies using weak super-
vision provided scripts.

However, actor identification in video still faced a series of
challenges, i.e., many factors, like pose, light and expression,
etc., influence the way a face appears. Meanwhile, many uncon-
trolled data quality factors, such as low resolution, occlusion,
nonrigid deformation, large motion and complex background,
also make the results of actor identification unreliable for most
image based recognition, and the situation is even worse in
movies.

In order to maintain the intra-class similarity and differentiate
the inter-class samples, a possible and effective way is to use the
hashing methods. In the meantime, face or actor features always
have very high dimensions and also the number of samples is
still very large. Thus, the hash projection can not only maintain
characteristics for classification and recognition, but also reduce
feature dimensions for more efficient processing. Considering
the characteristics of ‘batch’ ideas in our previous work [7] for
hash projection, we combined the batch-orthogonalized random
projection to generated tasks for MTJSRC [8].

In addition, Sang et al. [13] presented two schemes of global
face-name matching based frameworks for robust character
identification. Their experimental results shown that their ap-
proach is useful to improve results for clustering and identi-
fication of the face tracks extracted from uncontrolled movie
videos. However, they only used 15 feature-length movies, in
which, the training set has 1327 face tracks, and the testing set
has 5012 tracks. Therefore, Zhang et al. [14] have constructed
a “Celebrities on the Web” dataset which contains 2.45 million
distinct images of 421 436 celebrities and is orders of magnitude
larger than previous datasets. Consequently, with the large-scale
of the massive face or actor-based video data, the efficiency be-
came a more and more crucial problem. Often, the problems
with facial recognition based actor identification are rooted in
the need for greater processing power, human and machine.
Furthermore, the efficiency problems are common issues in the
computer vision and pattern recognition areas. In the same time,
cloud computing as a model for enabling ubiquitous network ac-
cess to a shared pool of configurable computing resources, has
been enjoying its flourishing.

Cloud-based methods or applications always archive more
efficient performance [15]–[18]. For example, Gao et al. [15]
proposed a new framework of providing Handwritten Charac-
ter Recognition as a Service based on cloud computing tech-
nology. Wang et al. creatively proposed a cloud-based ap-
proach to protect user’s data, enhance media quality and reduce
transmission overhead [19]. A cloud based food recognition
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platform, in which an improved 2DPCA algorithm is used for
object recognition, and a Hadoop based cloud server is built
for this platform [16]. In [20], Shamim and Ghulam, proposed
a cloud-supported framework, where speech and faces images
are extracted from health monitoring purposes. Zhang et al.
proposed a cloud-assisted drug recommendation services to pro-
vide significantly more available, reliable and efficient perfor-
mance [21]. Lai et al. realized a network and device aware
QoS approach for cloud-based mobile streaming, which effec-
tively solves the limited bandwidth problem available for mo-
bile streaming and different device requirements [22]. Suzuki
et al. [17] utilized the cloud system to maintain large-scale
database which includes learning key-points. We further note
that in [23], Lin et al. proposed a green video transmission algo-
rithm in the mobile cloud networks. Their work utilized video
clustering and channel assignment to achieve high quality video
transmission.

Video analysis is usually considered as one of the most im-
portant applications for the Internet of Things (IoT), and Ma
et al. have comprehensively addressed its objectives and scien-
tific challenges in [24]–[26]. Sheng et al. in [27] extensively
studied the energy-efficient device-to-device (D2D) communi-
cation scheme by cooperative relaying in wireless multimedia
networks. Liu et al. in [28]–[30] presented a novel resource
negotiation scheme bridging between dynamic sensing tasks
and heterogeneous sensors. Liu et al. in [31]–[33] proposed a
novel framework and subsequent participant selection and in-
centive mechanism for participatory crowdsourcing including
the smart device users, central platform and multiple task pub-
lishers. In [34], existing incentive mechanism are extensively
surveyed and future research directions are clearly given. Liu
et al. [35] extensively analyzed the relationship between energy
consumption and smart device user behaviors, and then pro-
posed a novel approach to select the optimal amount of partici-
pant while considering possible user rejections. Song et al. [36]
introduced an energy consumption index to quantify the average
degree of how participants feels disturbed by the energy cost,
and proposed a suboptimal approach for participant selection
under the multi-task sensing environment. Liu et al. [37] pre-
sented a quite novel family-based healthcare monitoring system
for long-term chronical disease caring. Event detection systems
and energy efficient approaches are given in [38], [39] including
both centralized optimal approach and fully distributed subop-
timal solutions by participatory sensing. Furthermore, Zhang
et al. [40] focused on privacy leakage issues of participatory
sensing and presented a participant coordination based archi-
tecture and flow to successfully protect user privacy. Finally,
Yurur et al. in [41] presented a few posture detections schemes
by using the sensor equipped smart devices.

Nevertheless, Apache Spark is a fast and general-purpose
cluster computing framework for cloud computing. It provides
high-level APIs in Java, Scala, Python and R, and an optimized
engine that supports general execution graphs. Therefore, we
used the cloud ideas of Spark framework to fast the shot bound-
ary detection and feature hashing processing, which cost most
of the time and result in low efficiency in the whole framework.

Network transmission and energy consumption is also a big
issue for cloud computing. Liu et al. [42] presented a novel

concept of quality of service (QoS) index to integrate the multi-
dimensional QoS requirements to ensure the degree of QoS
satisfactions. In [43], the authors proposed a novel MIMO rout-
ing scheme to ensure QoS. Liu et al. [44] proposed a novel
localization-oriented sensing model and a new notion of cov-
erage, Localization-oriented coverage (L-coverage for short),
by using Bayesian estimation theory. Yu et al. [45] proposed
a stochastic load balancing scheme, and finally provide proba-
bilistic guarantee against the resource overloading with virtual
machine migration, while minimizing the total migration over-
head. Yu et al. [46] considered the problem of scaling up a
virtual network abstraction with bandwidth guarantee in Cloud
datacenters. The authors in [47] efficiently optimized the trade-
off between the energy consumption of wireless camera sensor
networks and the quality of target localization.

III. OVERVIEW OF CLOUD-BASED ACTOR-SPECIFIC

SHOTS RETRIEVAL

As shown in Fig. 1, our actor identification framework mainly
includes four parts: cloud-based video segmentation, face tracks
generation, cloud-based feature representation, and MBJSRC
for recognition. Besides, we propose a actor-specific shots re-
trieval application based on these four parts. For the first part,
namely, video segmentation, we revised an accelerating shot
boundary detection in our previous work [48] by adding the
parallel computing with Spark for massive pixels processing.
Then, the face tracks are generated with efficient face detection
and tracking methods. After, in feature representation, the SIFT
features in face tracks are hashed in to new feature space with
BOLSH, and also the feature hashing and dimension reducing
is realized by cloud-based hashing with Spark. Finally, ideas
of ‘batch’ in BOLSH is mapped into ‘task’ in the multi-task
joint sparse representation algorithm, to form our classification
algorithm named MBJSRC.

Hitherto, with the proposed framework, each face track has
been assigned with a actor name. Based on the results of ac-
tor identification, there are many applications, such as actor/
character-specific movie retrieval, personalized video summa-
rization, intelligent playback and video semantic mining, etc.
Meanwhile, with the cloud-based shot boundary detection, each
video has been segmented into several shots. Actually, there are
always several face tracks in each video shot, and each shot can
be assigned with several actor names, which is the key word for
actor-specific shots retrieval. More specifically, a cloud-based
shot boundary detection method is applied to divide the movie
into several shots at first. Secondly, the face detection and track-
ing processing are applied, and after the identification of all the
detected face tracks in these shots, each shot will been labeled as
several actor names. Finally, by using the character name or ac-
tor name as the query entry, the corresponding actor’s spotlights
shots are presented to the user.

IV. CLOUD-BASED SHOT BOUNDARY DETECTION

Here, the shot changes are automatically detected using
the cloud version of our previous accelerating shot boundary
detection method.
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Fig. 1. Scheme illustration of the proposed cloud-based actor identification.

A. Accelerating Shot Boundary Detection

At first, we described the original accelerating shot boundary
detection as:

1) We accelerate the shot boundary detection process in spa-
tial domain in two aspects: one, by processing only the
pixels in Focus Regions.
Specifically, a video has thousands of frames, and each
frame has thousands of pixels. These vast frames and
pixels make the computation complexity very high, which
is the main reason that many shot boundary detection
methods or systems have low efficiency. Although spatial
sub-sampling of frames has been suggested to improve
video processing efficiency, it still depends on the choice
of the spatial window. Smaller window size is sensitive to
object and camera motions, while arbitrary window size
could not make the remaining pixels represent the frame
well.
Generally, the most essential information in a frame is
always concentrated around the center of a frame, and the
more the pixels are close to the frame center, the more
important the pixels are. In order to reduce the processing
time, redundant pixels should be removed and only infor-
mative pixels are kept for processing. To accomplish this,
a Focus Region is defined for each frame. The Focus Re-
gion of a P × Q sized frame is extracted in the following
steps.

a) Each image is divided into non-overlapping sub-
regions of size (P/p) × (Q/q) to get p × q number
of sub-regions.

b) The most external surrounding sub-regions (Col-
ored with red in Fig. 2) are defined as the non-focus
region.

c) The outer-most external surrounding sub-regions
(Yellow sub-regions) are defined as second focus
region.

Fig. 2. Illustration of focus region. The frame is partitioned into 8 × 10 sub-
regions. The outermost round subregions are the non-focus region, the second
outermost round subregions are the second focus region, and remaining subre-
gions are the highest focus region.

d) Remaining sub-regions around the center are de-
fined as focus region.

To get an informative while compact representation of a
frame, the non-focus region is discarded, the second focus
region is down-sampled by keeping only pixels with odd
x-coordinates. The focus region is fully kept.

2) We accelerate the shot boundary detection process in tem-
poral domain by skipping frames adaptively. Instead of
degrading the accuracy, almost all boundaries could be
detected including gradual transitions which are hard to
be detected. In order to efficiently reduce the number of
processed frames and also not to drop any boundaries be-
tween two shots, we set the initial skipping interval as
d1 . Then, the following skipping intervals are updated
adaptively based on the similarity of frames. As shown in
Fig. 3, {d1 , d2 , . . .} denotes the sequential skipping inter-
vals, and {D1 ,D2 , . . .} is the serial frame number in the
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Fig. 3. Illustration of adaptive skipping interval.

original video corresponding to all skipping intervals. Dk

is defined as

Dk =
k∑

m=1

dm . (1)

When αx,y is the similarity ratio between the xth and yth
frame, we update the skipping interval dj as follows:

dj =
j−1∑

k=1

1
j − 1

αDd −1 ,Dk
dk (6). (2)

That is, the greater α is, the larger of the skipping inter-
val is. These updated intervals are reasonable. Because
a great α in current skipping interval means the skipped
frames are very similar, we can boldly skip more frames.
But if α is small, it implies there are many changes in the
skipped frames and we need to cautiously skip frames,
so as to avoid classifying a motion as a shot boundary
and also avoid missing shots with less frames. Generally,
human visual reaction time is about 1–2 seconds. Sup-
pose the video frame rate is about 20–25fps, then a shot
that can cause visual reaction need last for 20–50 frames
at least. Therefore, the initial skipping interval d1 is set
to 40.
After, given the current processed frame Fi , if αi,i+dj

>
Tε (the threshold assigned in experiment), we can as-
sert that Fi is similar to Fi+dj

, and skip to process the
next dj+1 frames. Otherwise it means that there is a shot
boundary existing between Fi and Fi+dj

. Thereby, we
use a bisection search to find a refined boundary in this
range. First, we compute αi,i+dj /2 and αi+dj /2,i+dj

. If
αi+dj /2,i+dj

> Tε , boundary lies in the first half of Fi

to Fi+dj
, otherwise in the second half. Then, the same

process is carried out in the first half or second half of Fi

to Fi+dj
to refine the boundary position until half of the

range is only one frame.
We evidently accelerated the shot boundary detection pro-
cess and detect gradual transitions more robustly, no mat-
ter if the gradual transition is fade in/out, dissolve or wipe.
Moreover, it requires to compute mutual information for
n − 1 times on a video sequence of n frames by using
traditional frame by frame searching process, but in our
approach, we just need to compute it for log n times.

3) A corner can be defined as the intersection of two edges.
A corner can also be defined as a point for which there
are two dominant and different edge directions in a local
neighborhood of the point. The corner distribution is the
distribution of all detected corners scattered in a image.

Thus, the corner distribution of frames near candidate shot
boundaries is adopted to remove most of the false bound-
aries and to find the precise interval of the true boundary.
So far, it nearly detected all the boundaries. However,
camera or object motion could also lead to significant
change of frame content when we skip frames aggres-
sively. Thus, several false shot boundaries are caused by
camera or object motion, which are the main false bound-
aries. In order to remove these false boundaries, we used
the corner distribution analysis. More specifically, 1) in
abrupt transitions, a frame abruptly changes into a totally
different one; 2) changes in gradual transitions always
last about 5–20 frames, which couldn’t be felt by audi-
ence; 3) changes in false boundaries always last more than
100 frames. Actually, corner distribution of frames in true
boundary (abrupt and gradual transitions) is very differ-
ent from its forward and backward frames, but it is more
stable and consistent in camera and object motion caused
false alarms.

B. Cloud-Based Mutual Information Calculation

Although our original shot boundary detection really acceler-
ated the shot boundary detection, it still cost unacceptable time
for massive videos. More specifically, we found that most of
the time is cost for entropy and mutual information calcula-
tion in and between frames. In fact, in the mutual information
calculation on the Focus Regions, the gray value of each pixel
is summarized and then the portion of each gray value (0 to
255) is calculated. After, these portion is looked as distribution
probability to generate the entropy with Shannon Theory. By
analyzing the whole flowchart of mutual information as well
as frame similarity calculation, an intuitive idea is that a data-
parallel programming model for clusters of commodity machine
can handle this issue well. Thus, we used the Spark framework
for mutual information calculation.

Specifically, entropy measures the information content or
“uncertainty” of X and is given by

H(X) = −
∑

pX (x) log pX (x). (3)

The joint entropy of X,Y is defined as

H(X,Y ) = −
∑

pX Y (x, y) log pX Y (x, y). (4)

The mutual information between the random variables X and
Y is defined as

I(X,Y ) = H(X) + H(Y ) − H(X,Y ). (5)

Let V = {F1 , F2 , . . . , FN } denotes the frames of a video
clip V . For two frames (i.e., Fx and Fy ), we first compute
their own entropies(i.e., Hx , Hy ) and their joint entropy (i.e.,
Hx,y ). The mutual information between them is given by (5). If
IR
x,y , IG

x,y , IB
x,y respectively represent the mutual information of

each RGB component, we set Ix,y = IR
x,y + IG

x,y + IB
x,y as the

mutual information between frame Fx and Fy .
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Generally, Spark provides the Resilient Distributed Dataset
(RDD) abstraction trough a language integrated API in Scala.3

In the cloud version of the shot boundary detection, we calculate
the entropy and mutual information with Spark programming.
In fact, we used several basic functions in Spark, i.e., map(),
reduce() etc. Analyzing (3), the following pseudo-program im-
plements the entropy calculation processes.

1) val points = sc.parallelize(list(pixels in a image))
2) val p = points.map(x => (x, 1)).reduceByKey

((x, y) => x + y).collect
3) var sq = width ∗ height
4) p=p.mapValues( /sq)
5) p=p.mapValues(x => (−x ∗ log x))
6) var ha = p.reduce((x, y) => x + y)
We start by defining a RDD called points as which refer to all

the pixels in a image. Actually, the calculation of joint entropy
is with the same code to realized (4), and we can get the mutual
information between two frames with (5).

With the above pseudo-program, a series of processes for all
the pixels are distributed into different virtual machines in par-
allel. After, the whole calculation efficiency has been improved
obviously, which will been shown in the experimental results.

V. FACES DETECTION AND TRACKING IN SHOTS

The OKAO face detector,4 is used to detect frontal faces and
profile faces with 30◦ towards left or right in frame. Actually, a
typical movie may contains tens of thousands of detected faces.
However, these faces merely arise from a few hundred “tracks”
of a particular actors. Therefore it is feasible to discover the cor-
respondences between faces and reduce the volume of the data
that needs to be processed. Furthermore, stronger appearance
models can be built for each actor since a face track provides
multiple examples of the actor’s appearance. To obtain face
tracks, a robust foreground correspondence tracker [49] is ap-
plied for each shot. In practice, the face detection algorithm will
be tried in the first few frames of a shot, and it will go with
tracking only if face is detected. And if the faces of a actor
are occluded in the beginning of a shot, that actor can not be
detected and identified.

Using the tracking algorithm in [49], with the assumption that
the target face region can be represented by a set of superpixels
without significantly destroying the boundaries between target
and background, we model the prior knowledge regarding the
target and the background appearance by

yt(r) =
{

1, if sp(t, r) ∈ target
−1, if sp(t, r) ∈ background.

(6)

Here sp(t, r) denotes the rth superpixel in the tth frame, and
yt(r) denotes its corresponding label. A robust superpixel-based
discriminative appearance model is generated based on four fac-
tors: cluster confidences, cluster centers, cluster radius and clus-
ter members. This discriminative appearance model facilitates a
tracker to discriminate the face region and the background with

3[Online]. Available: http://www.scala-lang.org
4[Online]. Available: http://www.omron.com/r_d/coretech/vision/okao.html

mid-level cues. After, the target-background confidence map is
used to formulate the tracking task, and the best candidate is
obtained by the maximum a posterior estimates. With the super-
pixels tracking, we collect faces belonging to tracks efficiently
and accurately, and more details about the tracking algorithm
can be seen in [49]. However, short tracks which are often intro-
duced by false positive detections are discarded, and an example
of the final face tracks is shown in Fig. 4.

To extract face features and construct the representations, a
part-based descriptor extracted around local facial features [6],
[9] is utilized. Here we first use a generative model [6] to locate
the nine facial key-points in the detected face region, including
the left and right corners of each eye, the two nostrils and the
tip of the nose and the left and right corners of the mouth.
Then we extract the 128-dim SIFT descriptor from each key-
point and directly concatenate them together to form our final
face descriptor with dimensionality 1152. Fig. 5 illustrates some
selected faces with facial feature points marked in our approach.

VI. CLOUD-BASED BOLSH

In order to make large-scale image or video processing prac-
tical, Locality-Sensitive Hashing is one of the way. Because it
reduces the dimensionality of high-dimensional data, namely, it
hashes input items so that similar items map to the same buckets
with high probability. That is, Locality Sensitive Hashing can
not only maintain the similarity between items, but also reduce
the feature dimensions.

Sign-Random-Projection Locality-Sensitive Hashing (SRP-
LSH) is a widely used hashing method, which provides an un-
biased estimate of pairwise angular similarity, yet may suffer
from its large estimation variance. We propose the BOLSH,
as a significant improvement of SRP-LSH [7]. The proposed
BOLSH not only has the properties of Locality-Sensitive Hash-
ing on maintaining item similarity and reduce dimensions, but
also easy to applied to the cloud computing framework with
several independent batches.

A. BOLSH

Locality-sensitive hashing aims to hash similar data sam-
ples to the same hash code with high probability. Based on
the locality-sensitive property, a fundamental usage of locality-
sensitive hashing is to generate sketches, or signatures, or fin-
gerprints, for reducing storage space while approximately pre-
serving the pairwise similarity. These sketches or signatures
can be used for higher-level applications, e.g., clustering, near-
duplicate detection. Moreover, locality-sensitive hashing can
further be used for efficient approximate nearest neighbor (NN)
search, which is one of its most important applications. We can
index the hash code in an efficient way, i.e., in hash tables, to
enable efficient search for similar data samples to a query.

SRP-LSH is an important binary locality-sensitive hashing
method, which is widely used and extensively studied. The
Hamming distance between two codes of SRP-LSH provides
an unbiased estimate of the pairwise angular similarity. Al-
though SRP-LSH is widely used, it may suffer from the large
variance of its estimation. In our previous work [7], we proposed
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Fig. 4. Examples of the first 30 faces of a face track for “Jack” in Titanic, and the number below the image is the index of the face in the face track.

Fig. 5. Examples of detected face with facial feature points.

Fig. 6. Examples of 12 BOLSH projection vectors ωi generated by
orthogonalizing independent random projection vectors vi in four batches.

Batch-Orthogonal Locality-Sensitive Hashing (BOLSH), as an
improvement over SRP-LSH. Instead of independent random
projections, BOLSH makes use of batch-orthogonalized ran-
dom projection vectors, as illustrated in Fig. 6. It is proven in

[7] that BOLSH also provides an unbiased estimate of pairwise
angular similarity, and has a smaller variance than SRP-LSH
when the angle to estimate is in (0, π/2].

The proposed BOLSH method is closely related to many
recently proposed principal component analysis-style learning-
based hashing methods, which learn orthogonal projections. Al-
though BOLSH is purely probabilistic and data-independent, the
model of orthogonal random projection together with its theo-
retical justifications can help gain more insights and a better
understanding of these learning-based hashing methods. Fur-
thermore, since theoretical analysis and experiments both show
that BOLSH approximates the angle between two vectors more
accurately, BOLSH, in replace of SRP-LSH, can be used in vari-
ous applications requiring massive angle-related computations,
e.g., dot product, angular similarity, cosine similarity, Euclidean
distance.
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SRP-LSH [7] is a widely used locality-sensitive hashing
method for angular similarity, which embeds real vectors into
Hamming space. Angular similarity is defined as follows:

sim(a, b) = 1 − θa,b/π (7)

where θa,b = arccos( 〈a,b〉
‖a‖‖b‖ ) ∈ [0, π] is the angle between vector

a and b, and 〈a, b〉 means the inner product.
Meanwhile, a SRP-LSH function is defined as

hv (x) = sgn(vT x) (8)

where v refers to a random vector sampled from the normal
distribution N (0, Id) and

sgn(z) =
{

1, z ≥ 0
0, z < 0.

(9)

Given two data samples a and b, the locality-sensitive is that

Pr(hv (a) 	= hv (b)) =
θa,b

π
. (10)

By independently sampling K d-dimensional vectors
v1 , . . . , vK from the normal distribution N (0, Id), a binary-
vector-valued function h(x) = (hv1 , hv2 , . . . , hvK

(x), which
concatenates K SRP-LSH functions, thus produces K-bit codes.
Then by the locality-sensitive property, it is easy to prove that

E[dHamming(h(a), h(b))] =
Kθa,b

π
= Cθa,b (11)

where C = K/π.
Based on the SRP-LSH, the ideas of BOLSH is just to orthogo-

nalize N(1 ≤ N ≤ min(K, d) = K, 1 < K ≤ d of the random
vectors sampled from the normal distribution N (0, Id), where
d is the dimension of data space. With orthogonalization, the re-
sulting N vectors are no longer independently sampled, thus we
group their corresponding bits together as a N -batch, and N is
called the batch size. Formally, assuming that K = N × L, and
1 ≤ N ≤ d, K random vectors v1 , v2 , . . . , vK are independently
sampled from the normal distribution N (0, Id), and then are
divided into L batches with N vectors each. The QR decompo-
sition is processed to these L batches of N vectors respectively.
After, we get K = N × L projection vectors w1 , w2 , . . . , wK .
This results in K BOLSH functions (hw 1 , hw 2 , . . . , hwK

),
where hwi

is defined as

hwi
(x) = sgn(wT

i x). (12)

In conclusion, with the BOLSH algorithm, each data sample
with d dimensions is transferred into a K dimensions vector
with N batches (K = N × L, each batch have L dimensions).
Actually, the batch in BOLSH exactly matches the element of
task in the following used MTJSRC algorithm for video face
recognition.

B. BOLSH by Cloud Computing

With input: Data space dimension d, batch size 1 ≤ N ≤ d,
the number of batches L ≥ 1, resulting code length K =
N × L, the BOLSH will generate a random matrix H =

[v1 , v2 , . . . , vK ] with each element being sampled indepen-
dently from the normal distribution N (0, 1). After the or-
thogonalization, we get the output projection matrix Ĥ =
[ω1 , ω2 , . . . , ωK ]. In fact, while we extracted a 1152 dimen-
sions feature for each face, we set K = 400, N = 80, L = 5 in
our experiment.

With the projection matrix of BOLSH, all faces detected and
tracked from the video need to be projected into the hash space.
Nevertheless, a video always has a large number of frames, and
also each frame contains several faces. That is, there will be
massive faces to be projected, and this will result in very low
efficiency. In fact, when the projection matrix is acquired, all the
face images are dealt with a series of the same pixel value wise
calculations. Intuitively, the BOLSH projection can be done by
map/reduce processes in a cloud computing framework.

More specifically, the map/reduce functions in the Spark com-
puting framework are used to do the BOLSH projection for all
face images in parallel. Actually, the following pseudo-program
implements the BOLSH projection for all face images in
parallel.

1) val faces = sc.parallelize(list(faces detected and tracked
in the video))

2) val f=f.mapValues(x => (Ĥdotx))
where Ĥ is the projection vector for BOLSH. Actually, these

vectors are generated randomly, and also been grouped and
orthogonalized.

VII. KERNEL-VIEW MULTI-BATCH JOINT SPARSE

REPRESENTATION AND CLASSIFICATION

Given a set of retrieved gallery face images and the extracted
probe face tracks, we present in this section a simple yet efficient
algorithm for face track identification. Each unlabeled face track
is simply represented as a set of BOLSH projection features by
image feature vectors extracted from all images in the track.
One simple method for identification is to directly calculate the
feature distances between a probe face track and the labeled
exemplar faces, and then assign the probe face track to the near-
est neighborhood. Another feasible method is to classify each
image in the track independently via, e.g., sparse representation
classification, and then assign the face track to the subject that
achieves the highest frequency.

In this work, by viewing the identification of each image in
a probe face track as a task, the face track identification can be
naturally casted to a multi-task face recognition problem. This
motivates us to apply the multi-task joint sparse representation
model [8] for face track classification. The key advantage of
multi-task learning lies in that it can efficiently make use of
complementary information contained in different sub-tasks. In
addition, we also extend the multi-task learning into kernel-view,
which is more competitive than the state-of-the-art multiple
kernel learning methods for face tracks recognition.

A. Multi-Batch Joint Sparse Representation Based
Recognition

Suppose we have a set of exemplar faces with M subjects.
Here, a subject means a person, which refers to a set of the
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same person’s faces. Denote Xl = [Xl
1 , . . . , X

l
M ] as the training

feature matrix, and Xl
m ∈ Rdl ×pm is associated with the mth

subject, where dl is the dimensionality of the lth batch of the
BOLSH hash value, and p =

∑M
m=1 pm means the total number

of training samples. Here, we consider a supervised L-batch
(task) linear representation problem as follows:

yl =
M∑

m=1

Xl
m ωl

m + εl , l = 1, . . . , L (13)

where y = yl means one face of a face track and yl as a batch
(task) is the lth batch of each face image’s BOLSH hash value in
this track. Meanwhile, ωl

m ∈ Rpm is a reconstruction coefficient
vector associated with the mth subject, and εl is as the resid-
ual term. Denote ωl = [(ωl

1)
T , . . . , (ωl

M )T ]T the representation
coefficients in batch l, and wm = [ω1

m , . . . , ωL
m ] the representa-

tion coefficients from the mth subject across different batches
(tasks). Furthermore, we denote W = [ωl

m ]m,l . Therefore, our
proposed multi-task joint sparse representation model is formu-
lated as the solution to the following problem of multi-task least
square regressions with �1,2 mixed-norm regularization

min
W

F (W ) =
1
2

L∑

l=1

∥∥∥∥∥yl −
M∑

m=1

Xl
m ωl

m

∥∥∥∥∥

2

2

+ λ

M∑

m=1

‖ ωm ‖2 .

(14)
Here, to optimize the model, the accelerated proximal gradi-

ent [8] is adopted to solve the (14) with fast convergence rate
guaranteed. The accelerated proximal gradient is composed by
a weight matrix sequence Ŵ t = [ωl,t

m ]t≥1 , and an aggregation

matrix sequence V̂ t = [υl,t
m ]t≥1 . The Ŵ t+1 is updated according

to the result

ω̂l,t+1 = υ̂l,t − η∇l,t , l = 1, . . . , L (15)

ω̂t+1
m = [1 − λη

‖ω̂t+1
m ‖2

]+ ˆωt+1
m ,m = 1, . . . , M. (16)

Here ∇l,t = −(Xl)T yl + (Xl)T Xlυ̂l,t , η is the step size
parameter, and [•]+ = max(•, 0). In addition

V̂ t+1 = Ŵ t+1 +
αt+1(1 − αt)

αt
(Ŵ t+1 − Ŵ t) (17)

where αt is directly set as 2/(t + 2)[8] in our approach.
With the accelerated proximal gradient algorithm, we ob-

tained the optimal Ŵ = [ω̂l
m ], where ω̂l

m associated with the lth
task (batch) in the mth subject. The lth batch yl of each face
image fj in a face track can be approximated as yl = Xl

m ω̂l
m .

For classification and recognition, the decision is ruled in favor
of the subject with the lowest total reconstruction error accumu-
lated over all the L batches

m∗
j = arg max

m

L∑

l=1

θl
∥∥yl − Xl

m ω̂l
m

∥∥2
2 (18)

where θlL
l=1(

∑
l θ

l = 1) are the weights that measure the con-
fidence of different batches in final decision.

There are tens of faces in each face track, and each of the face
have assigned a subject label with (18). After, the whole face
track is recognized with an unified subject by

m∗ = arg max
m

J∑

j=1

[[m∗
j == m]]. (19)

We call the model (14) along with classification rule (18 and
19) as the MBJSRC in this paper.

B. The Kernel View Extensions Recognition

Heretofore, the face track identification is feasibly realized by
the MBJSRC algorithm for sparse representation and classifica-
tion. In order to combine multiple feature kernels for face track
recognition, we extend the MBJSRC algorithm to the kernel
version as described in [8].

For a Reproducing Kernel Hilbert Space, the kernel trick
is to use a non-linear function φl(xi)T φl(xj ) = gl(xi, xj ) for
some given kernel function gl . Let Gl = φl(Xl)T φl(Xl) be
the training kernel matrix associated with the lth modality of
the feature, and hl = φl(Xl)φl(yl) be the test kernel vector
associated with the lth modality. In our approach, the simple and
available kernel matrix is constructed by directly using vector
hl and the column of each kernel matrix Gl as the extracted new
features. In this new space, the original multi-task least square
regressions with �1,2 mixed-norm regularization problem can
be written as

min
W

F (W ) =
1
2

L∑

l=1

∥∥∥∥∥hl −
M∑

m=1

Gl
m ωl

m

∥∥∥∥∥

2

2

+ λ

M∑

m=1

‖ωm‖2 .

(20)
Actually, in the experiment, the kernel matrices are computed
as exp(−χ2(x, x

′
)μ), and μ is set to be the mean value of the

pairwise χ2 distance on the training set.

VIII. EXPERIMENTAL RESULTS

We conduct extensive experiments to evaluate the efficiency
and effectiveness of the proposed cloud-based actor identifica-
tion with BOLSH and sparse representation. This section is
organized as follows: Section VIII-A introduces the details
of construction of the used dataset. Section VIII-B demon-
strates the efficiency of cloud-based shot boundary detection
and the cloud-based BOLSH. VIII-C details the effectiveness
of our approach with different settings in BOLSH. Meanwhile,
Section VIII-D shows a naive approach of the Sparse Represen-
tation (SR) classifier, and also we demonstrate the performance
comparison among our approach, the NN and the SR classifier
as well as the SVM classifier.

A. Dataset Construction

Since we mainly test our approach on a movies(“Titanic”
(1997)) and a TV series of The Big Bang Theory, episode 1-5
from season 2, we constructed our dataset from image data and
video data as follows.

1) Gallery Dataset: we select eight actors who are the main
actors in our selected movie and TV series, namely,
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TABLE I
SUMMARY OF TEST MOVIES

Movies Duration(min) Resolution #Shot Genres

Titanic 195 1080 × 720 1550 Drama & Romance
The Bigbang 1 22.3 1080 × 720 374 Comedy
The Bigbang 2 21.8 1080 × 720 387 Comedy
The Bigbang 3 22.1 1080 × 720 380 Comedy
The Bigbang 4 22.5 1080 × 720 368 Comedy
The Bigbang 5 21.8 1080 × 720 394 Comedy

characters of Rose, Jack, Caledon, Leonard, Sheldon,
Penny, Howard and Rajesh. For character of each actor,
we first retrieve related face images from Google Image
and Bing Image respectively using the names of actors
as query. Then, the above mentioned OKAO face detec-
tor are applied on the images returned by the research
engine. And, totally 100 face images are added to the
Gallery Dataset with the name of the actors as the label.
Actually, the 100 face images means the first 50 faces
from both the query results from Google Image and Bing
Image respectively. Therefore, finally, there are 8 × 100
face images in our Gallery Dataset.

2) Video Data: A video corpus consisting of one movie and
five episodes of TV series is downloaded from the Internet.
The resolution of these videos are 1280 × 720, and also
and the frame rate is about 25 fps.

Meanwhile, by only considering the detected tracks, the vol-
ume of frames that need to be processed can be largely reduced
to accelerate the classification process. With the cloud-based
shot boundary detection, each video is segmented into several
shots, as shown in Table I (The Bigbang 1–5 refer to episode
1–5 of The Big Bang Theory, season 2).

After the video is segmented into shots, the tracking process
takes the results of OKAO face detection5 as input, and generates
several face tracks using the tracking algorithm in [49]. Then, a
nine-point SIFT feature is used in the experiments, namely, to
extract face features from the exemplar faces and face tracks.
Referring to the work of Everingham et al. [9], a generative
model is adopted to locate the nine facial key-points in the
detected face region, including the left and right corners of each
eye, the two nostrils and the tip of the nose and the left and
right corners of the mouth followed by 128-dim SIFT feature
extraction process.

B. Efficiency of Cloud-Based Approaches

In this section, we illustrate the efficiency of two cloud-based
processes, namely, the cloud-based shot boundary detection and
the cloud-based BOLSH. The hardware environment of the sys-
tem includes the video storage and processing center: Intel Core
2 Quad Q9550 CPU, 2.83 GHz (4-kernel) frequency, 12G mem-
ory. For the cloud-based shot boundary detection as well as the
cloud-BOLSH hashing, we used totally 4 nodes, including one
physical machine and 3 virtual machine, and each machine has

5[Online]. Available: http://www.omron.com/r_d/coretech/vision/okao.html

TABLE II
EFFICIENCY OF CLOUD-BASED APPROACH

Videos #Shot Cost Time (s)

Our Approach Method [48]

Titanic 1550 1153 3773
The Bigbang 1 374 372 1151
The Bigbang 2 387 501 1214
The Bigbang 3 380 447 1098
The Bigbang 4 368 398 1133
The Bigbang 5 394 426 1208

TABLE III
RECOGNITION PERFORMANCE OF BOLSH COMBINED WITH MBJSRC

Parma. of BOLSH

Videos #FaceTracks N=1152, L=1 N=80, L=5 N=100, L=8

Titanic 170 80.6% 83.5% 78.2%
The Bigbang 1 84 90.5% 92.9% 88.2%
The Bigbang 2 71 87.3% 87.3% 85.9%
The Bigbang 3 80 91.2% 93.7% 88.7%
The Bigbang 4 97 88.6% 90.7% 88.7%
The Bigbang 5 75 88.0% 93.3% 88.0%

2G memory. Firstly, we do efficiency comparison with the ap-
proach with cloud computing ideas, and the accelerating shot
boundary detection methods in [48], which is shown in Table II.

In addition, in order to analyze the efficiency of our cloud-
based BOLSH hash method, we manually chose 149 face tracks
with 11 692 face images in the movie “Titanic” and 254 face
tracks with 20 311 face images in the TV series of “The Big
Bang Theory”. Meanwhile, we extracted a 1152 dimensions
feature vector for each face. That is, we evaluate our cloud-based
approach on totally 32 003 face images. Using the projection
matrix Ĥ generated in VI-A, we project the sample matrix
X ∈ R1152×32003 into a hashing matrix Xh ∈ R400×32003 with
K = 400, N = 80, L = 5.

Since all these faces can be hashed with the same processes,
we used the cloud-based framework to assign the data in HDFS
database and also the projection processes into different com-
puting nodes. With the cloud computing ideas, all the face im-
ages will be projected in parallel. Since all the projection tasks
are distributed to different virtual machines, our cloud-based
BOLSH hashing has obviously achieved more high efficiency
compare to the original BOLSH.

C. Recognition Performance of the BOLSH and MBJSRC

While we combined the characteristic of ‘batch’ in BOLSH
with the ideas of ‘task’ in MTJSRC, our approach achieved
more satisfactory performance in the recognition effectiveness
and accuracy. As shown in Table III, we evaluate the recognition
accuracy of BOLSH combined with MTJSRC with different
setting of K, L and N in BOLSH.
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TABLE IV
RECOGNITION PERFORMANCE OF DIFFERENT APPROACHES

Videos #FaceTracks Our Approach SR Method NN Method SVM Classifier

Titanic 170 83.5% 81.7% 78.2% 69.5%
The Bigbang 1 84 92.9% 91.7% 83.3% 78.9%
The Bigbang 2 71 87.3% 85.9% 74.6% 71.6%
The Bigbang 3 80 93.7% 88.7% 87.5% 85.1%
The Bigbang 4 97 90.7% 90.7% 85.5% 81.7%
The Bigbang 5 75 93.3% 86.7% 86.7% 84.2%

D. Performance Comparisons With Different Approaches

Three baseline methods are employed for comparison: i) the
NN classifier used in [9] which directly calculates the feature
distances between a probe face track and the labeled exemplar
faces, and then assigns the probe face track to the nearest neigh-
borhood; 2) the sparse representation (SR) classifier [50]; and 3)
the SVM classifier. For the SR and SVM methods, they classify
each image in the track independently and then assign the face
track to the subject that most frequently occurs in this track. In
addition, for SR algorithm in [50], we give some details about
how to use it in our track level face recognition.

Suppose the matrix X = {Xm} for the entire gallery set is
the concatenation of the p =

∑m
i=1 pm training samples of all

M subject classes. Denote Xm = [υm,1 , υm,2 , . . . , υm,pm
] ∈

Rd×pm as the mth subject samples. For a new (test) face track
y with K face images, we first classify the kth face into
the class ck ∈ {1, . . . , M}, and also define C = [c1 , . . . , cK ]
as the class vector for the test face track. Then, we assign
c = arg maxm ‖C − m‖0 , which means the most frequently
occurred subject class, as the final subject class for the test
track. Meanwhile, the class label ck of the kth face in the track
is obtained as follows.

yk is the kth face in the face track, and represented as

yk = Xα + e (21)

where α ∈ Rp is the coefficient vector. Then, to get the infor-
mative vector α = [αT

1 , . . . , αT
M ]T is equivalent to the solution

of the following �1-minimization problem:

α̂1 = arg min ‖α‖1 subject to yk = Xα + e. (22)

That is, to solve the following problem:

min
α

F (α) =
1
2
‖yk − Xα‖2

2 + λ‖α‖1 . (23)

This problem can be solved in polynomial time by standard
linear programming methods [51]. After, we classify yk to the
subject class that minimizes the residual between yk and ˆykm

ck = arg min
m

‖yk − Xm αm‖2 . (24)

There always exist a few incorrect faces in the gallery set,
and thus training based methods, e.g., SVM and Subspace anal-
ysis, are not applicable in our setting, as shown in Table IV. In
contrast, our multi-task linear representation based method is
quite robust for the condemnation since the joint representation

ability of noise images is lower compared with those “good”
samples.

Using N = 80, L = 5 for BOLSH, the evaluation results are
listed in Table IV, from which we can see that our approach
significantly outperforms both baselines. In our experiment, the
adopted accelerated proximal gradient algorithm converges at
roughly 10–20 rounds of iterations. The average running time
is 0.31 s per probe face track. The parameter λ in (5) is set to
0.1 throughout our experiment.

IX. CONCLUSION

With explosive development of social network and video shar-
ing websites, an efficient and accurate way to index and organize
videos according to the identities of the involved persons be-
comes heavily demanded. Meanwhile, querying actor-specific
video clips in large scale video dataset has attracted much at-
tentions in both video processing and computer vision research
field. Nevertheless, both the effectiveness and efficiency of many
existing methods are not so satisfactory. Therefore, in this pa-
per, we propose an efficient cloud-based actor identification
approach with BOLSH and MTJSRC algorithm. More specif-
ically, videos are segmented into shots with the cloud-based
shot boundary detection, and also the cloud-based BOLSH is
implemented on video faces for feature description. Then, the
batches in BOLSH are used as tasks for the MTJSRC algorithm
for actor identification in each face track. Extensive experiments
are implemented to demonstrate the satisfying performance of
our approach considering both accuracy and efficiency.

Besides, the accelerated proximal gradient algorithm in
MTJSRC is a machine learning algorithm which run iterative
optimization procedures, to minimize a target function. There-
fore, in future, with the Spark programming, it can run much
faster by keeping their data in memory. Therefore, as the typical
example for Spark programming for logistic regression [52], we
can parse the accelerated proximal gradient algorithm into fine
processes, and assign all these processes into different Spark
nodes. Furthermore, with faster processing, we can test more
parameters combination to get the most excellent model and
parameters.
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