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Abstract— The upsurge of cloud video recording (CVR) has
gained increasing attention from the general public and entre-
preneurs. With live video records archived in the cloud, the CVR
paradigm enables various smart services by keeping track of
activities in the monitored region from anywhere at any time.
However, the limited upstream bandwidth affects the quality of
surveillance when multiple distributed cameras share the same
upstream link. To solve the problem, this paper proposes an
efficient upstream bandwidth multiplexing algorithm to intelli-
gently allocate upstream bandwidth for each live video stream
while maximizing the overall utility from the perspective of a
CVR user. Specifically, we formulate the upstream bandwidth
multiplexing problem as a constrained stochastic optimization
problem, and apply the technique of hierarchical approximation
to solve it efficiently. Our algorithm can be extended to take the
priority of video streams into account and allocate more upstream
bandwidth to video streams with higher priorities. We explicitly
prove the approximation ratio of the proposed algorithm.
In addition, we also conduct extensive trace-driven simulations to
verify the effectiveness of our algorithm. The simulation results
show that our algorithm improves the overall CVR user utility
by over 20% compared with other alternatives, and the average
utility per bandwidth unit is guaranteed to be stable even when
the number of video streams increases.

Index Terms— Adaptive streaming, allocation optimization,
bandwidth multiplexing, cloud video recording (CVR).

I. INTRODUCTION

TRADITIONALLY, closed-circuit television equipments
or digital video recorders (DVRs) were widely employed

to perform video surveillance over a region [1]. Video streams
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are recorded directly to network-attached storage or internal
flash storage. However, the cost of purchasing specialized
cameras and recording devices is relatively expensive and
such solution is also not scalable when a huge amount of
video streams should be stored, processed and delivered [2].
With the advance of cloud computing technology, cloud video
recording (CVR) is emerging as a promising solution to
deliver affordable video surveillance services for common
users.

Different with conventional video surveillance approaches,
CVR-based solution first needs to transmit live video streams
generated by wireless cameras (e.g., webcam and IP camera)
to the cloud, so that the footage will never be lost and always
be accessible. On the other hand, the cloud is able to securely
stream the video to authorized users, and perform intelligent
analysis over the footage and send alerts to a CVR user when a
specific event has been detected in a monitored region. Various
CVR users can also create video clips from their footage and
share with their friends and family easily.

The potential of CVR has also attracted significant atten-
tion from industrial practitioners, ventures, and researchers.
A few leading competitors in the market include DropCam [3],
iVideon [4], and Cloud DVR [5]. On June 20, 2014, DropCam
was acquired by Google’s Nest Labs with U.S. $555 million.
The market of CVR is expected to keep expanding in the
next few years [6]. However, the practical development of
CVR systems is still in its infancy and there are a number
of technical challenges to be addressed.

Given a typical scenario in an indoor environment
(e.g., building, house, and apartment), a CVR user normally
deploys multiple wireless cameras in the monitored region.
All video streams generated by those wireless cameras are
transmitted simultaneously via wireless access points (APs) to
the remote cloud server. There exist many unique challenges
to design such a new service architecture. As each video
stream has different utility to the CVR user, it is important
to properly allocate upstream bandwidth among video streams
to achieve utility maximization. Meanwhile, because it is not
easy to predict which video stream will later be viewed by
the CVR user, we also need to ensure that the received utility
of each video stream is above a minimum threshold, so as
to avoid missing all details in any video stream. Different
from the utility analysis for a single video stream, the utility
of a CVR user is determined by the total utility of mul-
tiple video streams. A straightforward approach is to share
the upstream bandwidth among multiple cameras in a time-
division manner [7]. However, such a simple approach is hard
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to ensure the optimality and stability of user utility when the
bandwidth resource demand of live video streams fluctuates
with time. The objective problem, normally considered as
a constrained stochastic utility maximization problem, has
very high computational complexity incurred by video-layer
selection, flow heterogeneity, and temporal utility fluctuations.
It is very challenging to design an efficient algorithm without
using any prediction techniques.

In this paper, we aim at optimizing the overall CVR user
utility by efficient upstream bandwidth multiplexing among
multiple cameras for CVR services. To this end, we formulate
the problem as a constrained stochastic joint optimization
problem of bandwidth allocation and rate adaptation. This
optimization problem can be further decomposed into
two subproblems, namely, bandwidth allocation problem
and rate adaptation problem. The former determines how
much upstream bandwidth should be provisioned for each
video stream, while the later decides which video layers
should be transmitted. However, the decomposed problems
are proven to be NP-hard. Thus, we further propose an
integer-approximation algorithm to solve the decomposed
problems and explicitly prove the approximation ratio of
our proposed hierarchical approximation algorithm. Overall,
our main contributions of this paper can be summarized as
below.

1) To the best of our knowledge, we are the first to study
the problem of upstream bandwidth multiplexing for
cloud-based video recording services. We formulate the
CVR user utility maximization problem as a constrained
stochastic optimization problem, and consider both flow
multiplexing and temporal multiplexing. Our formula-
tion is able to be extended to take different priorities of
video streams into account.

2) We decompose the optimization problem into two sub-
problems and explicitly prove their NP-hardness. Then,
we propose a hierarchical approximation algorithm to
maximize the CVR user utility. Our algorithm has low
computational complexity and also avoids the use of any
prediction techniques. Moreover, it does not require the
feedback on received video frames from the viewing
side.

3) We conduct extensive trace-driven simulations to eval-
uate the effectiveness of our proposed algorithm. The
simulation results show that our algorithm can improve
the overall CVR user utility by over 20% compared with
other approaches, and ensure that the average utility per
bandwidth unit remains at a high level even when the
number of video streams increases. We also examine the
adaptability of our proposed algorithm under different
user preference settings.

The rest of this paper is organized as follows. Section II
reviews related work in the area of CVR and surveillance.
Section III describes the system model and problem
formulation. Section IV describes the proposed algorithm
for upstream bandwidth multiplexing. Section V provides
the simulation results for evaluating the effectiveness of
our algorithm. Finally, Section VI concludes this paper and
discusses future directions.

II. RELATED WORK

The popularity of CVR is attributed to the technical
development in multiple domains, including video sensor
network (VSN), wireless video transmission, Internet video
streaming, and cloud computing.

VSNs have been extensively studied in [8]. Previous works
mostly focused on resource provisioning to enable efficient
monitoring in the targeted area, scheduling and placement of
video sensor nodes, workload balancing on sensor nodes, and
reliable communication support for distributed sensor nodes.
To address these problems, researchers investigated various
solutions for video tracking [9], video surveillance [10],
network architecture [11], communication protocols [12],
and video compression [13]. In spite that a CVR system is
similar to a VSN, the CVR system differs in that it has a
powerful back-end cloud to deliver intelligent services which
is much more scalable.

A CVR system normally relies on wireless links to transmit
video streams from cameras to nearby APs. Previous works on
wireless video transmission focused on the challenges incurred
by stochastic wireless network conditions, for example,
reliable video transmission over wireless channels [14], real-
time wireless video transmission [15], and energy-efficient
wireless communications [16]. To the best of our knowledge,
none of them investigated the bandwidth resource multiplexing
problem across video streams sharing the same uplink.

Another approach to address network condition variations
is to control the playback rate of a video stream
adaptively. Related techniques include scalable video
coding (SVC) [17] and dynamic adaptive streaming over
HTTP (DASH) [18], [19]. If a video stream is coded
with SVC, then the rate can be controlled by selecting
different video layers to be transmitted [20]. A DASH-based
system can encode one video chunk into multiple versions with
different playback rates and store them as separate files. Thus,
a DASH client can switch the rate by requesting different
video files [18]. Different metrics (e.g., network condition and
playback buffer state) can be adopted in designing the rate
adaptation algorithms. Prediction techniques were often used
to increase the effectiveness of rate adaptation (see [20]–[22]).

Internet video streaming is also a closely related area.
To guarantee that each video stream has sufficient resource,
Ren and van der Schaar [23] proposed to allocate resources to
each video stream in a time-division manner. Ma et al. [24]
considered to utilize adaptive streaming to improve streaming
performance. The rate of a video stream can be dynamically
controlled based on the network condition [25], user quality
of experience (QoE) [19], and playback buffer status [26].
The huge resource demand of delivering video streams has
increasingly exerted pressures on the underlying video distri-
bution system. The researchers have proposed various system
architectures to reduce the deployment cost while ensuring
user QoE. One promising approach is to introduce cloud
computing technologies and leverage the power of cloud plat-
forms to enable large-scale video streaming (see [27], [28]).
Wen et al. [29] summarized the emerging paradigms of cloud
mobile media and proposed a cloud-centric media platform
for cloud-based mobile media. Jin et al. [30] further leveraged
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TABLE I

NOTATIONS

the media cloud to deliver on-demand adaptive video stream-
ing services, and achieved a three-way tradeoff between the
caching, transcoding, and bandwidth cost, at each edge server.
There are some other works to study the design of video
transmission schemes over different kinds of architectures
(see [31]–[33]).

Compared with previous works, our work is the first to
address the problem of upstream bandwidth multiplexing in
CVR systems. Our problem formulation takes the overall
utility of multiple video streams into account, which is dif-
ferent from that in [7] and [34]–[36]. In the design of a
CVR system, the main challenge lies in that the received
user utility cannot be known beforehand, namely, it is hard to
learn which video stream will later be viewed by a CVR user.
Unlike traditional approaches, our solution does not require
any predicted information and thus avoids the complexity
incurred by inaccurate prediction.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we will describe our system model and
formulate the investigated problem in detail. All notations used
in this paper are summarized in Table I.

A. System Model
Let us consider a typical CVR system, as shown in Fig. 1,

in which a CVR user (i.e., an organization or individual)
can deploy a set of wireless cameras to perform real-time
surveillance over a region (e.g., building, townhouse, and
apartment). These wireless cameras can be placed at well-
chosen locations to increase the coverage. All video streams

Fig. 1. Functional components in a typical CVR system: cameras, AP, cloud
servers, and users.

captured by the cameras are transmitted over wireless links
to the nearby AP, which further uploads video streams to the
remote video cloud service provider (e.g., DropCam). As the
upstream link of the AP has limited capacity, the upstream
link has to be multiplexed by different video streams. After
receiving raw video streams, the process chain is performed
in video cloud in terms of content storing, video transcoding,
and video content delivery. With the assistance of the cloud,
any authorized user can watch a live stream of any camera or
replay recorded videos at any time on any devices.

Although the single-AP model considered in this paper can
cover most use cases in current CVR systems, it is possible
that multiple APs may be accessible in a specific region. In this
case, we can divide a large region into multiple small regions
according to the coverage of each AP. If multiple APs share
the same upstream link, we can treat those APs as a single
virtual AP and still be able to characterize key features using
the single-AP system model. However, if multiple APs belong
to different CVR users and share the upstream bandwidth in
an uncooperative manner, it is necessary to use other system
models since we should solve a completely different objective
problem for bandwidth sharing. The problem of bandwidth
allocation among uncooperative users is beyond the scope
of this paper. We will investigate the multi-AP case of the
bandwidth multiplexing problem in the future work.

There are two kinds of data flows in our system, namely,
video data flow and control data flow. The video data flows
are transferred to cloud servers via AP, and further delivered
to viewers after processing, while the control flows are trans-
mitted in the reverse direction. A CVR user can control the
transmission behaviors of cameras by sending performance
requirements (e.g., basic utility constraint) for video streams.
The bandwidth allocation algorithm is running on the AP such
that cameras will transmit video streams according to resource
allocation decisions made by the AP.

A CVR user needs to pay the cloud service cost (including
storage and transcoding service) to a CVR service provider,
and the bandwidth cost to the Internet service provider. How
to better utilize the limited upstream bandwidth to achieve
high-utility video recording is the focus of our research.

Suppose that the system operation is time slotted, and
each time slot lasts for τ . The set of cameras is denoted
by C = {C1, C2, . . . , CN }. Also assume that cameras utilize
SVC video encoding techniques to process their video
bitstreams before transmitting them to the AP. Each video
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Fig. 2. Multilayer video transmissions between distributed cameras and
the AP.

frame consists of multiple video layers, including one base
layer and multiple enhancement layers. In each time slot t ,
each camera c generates a video frame f c,b

t corresponding
to the base layer, which consists of a set of video packets
f c,b
t

.= {pc,b
t (1), pc,b

t (2), . . . , pc,b
t (mc,b

t )}, where mc,b
t rep-

resents the number of video packets associated with video
frame f c,b

t . Denote the set of enhancement layers by E with
|E | = K . For an enhancement layer e ∈ E , each camera c also
generates a video frame f c,e

t , denoted by f c,e
t

.= {pc,e
t (1),

pc,e
t (2), . . . , pc,e

t (mc,e
t )}. The dependency among enhance-

ment layers can be represented by the relation ≺. Specifically,
if e1 ≺ e2, e1, e2 ∈ E , then the enhancement layer e2 cannot be
decoded unless the enhancement layer e1 has been received.

The transmissions between distributed cameras and the AP
are described in Fig. 2. Each camera is configured with a
base-layer transmission queue and multiple enhancement-layer
transmission queues, which buffer the packets corresponding
to base-layer frames and enhancement-layer frames,
respectively. As a CVR user usually views live video
streams, the transmission queues only need to store recently
generated video packets. To ensure the timeliness of video
transmission, the size of queues on either cameras or APs
is set to a video frame, as a large queue will introduce
significant delay. Note that the number of packets associated
with each video frame mc,b

t (or mc,e
t ) depends on the amount

of information contained in the frame. In the AP, each
receiving queue buffers video packets generated by a camera.
The AP cannot know beforehand whether a packet belongs
to a base layer or an enhancement layer without performing
decoding. For simplicity, we assume that the AP allocates
one receiving queue for each camera.

The decision on resource allocation made by an AP adjusts
data rate of each camera, while the transmission decision
indicates which queues packets will enter. After receiving
resource allocation decisions, each camera makes transmission
decisions in the following way: selecting packets from lower
layers until the bandwidth resource needed to transmit these
selected packets reaches the amount determined by resource
allocation decisions.

To ensure liveness of video streams, each video packet is
associated with a transmission deadline. All video packets
belonging to the same video frame have the same deadline.
Note that the transmission deadline depends on the frame
rate of video streams generated by cameras, denoted by 1/τ ,

which indicates that each camera will generate one video
frame during each time slot. Moreover, we assume that packets
of one video frame cannot provide any utility for a user unless
all packets of that video frame can be successfully transmitted
to the user. The utility that a video frame f c

t carries is defined
by a function u( f c

t ). Without loss of generality, we assume that
u( f c,e

t ) ≤ u( f c,b
t ),∀e ∈ E , which captures the dependency

between the base-layer video frame and enhancement-layer
video frames. Intuitively, the utility of a video stream is a
measure of user QoE on video quality assessment.

The total transmission rate of an AP is constrained
by B . Denote the transmission rate allocated to receiving
queue c by bc(t), then the amount of video which can
be transmitted in one time slot for receiving queue c is
bc(t) · τ . The transmission decision of camera c is defined
by a vector (Db

c (t), De1
c (t), De2

c (t), . . . , DeK
c (t)), in which

Db
c (t), Dek

c (t) ∈ {0, 1}, ek ∈ E . If Db
c (t) equals to 1, then all

packets in the base-layer transmission queue of camera c will
be transmitted to the AP in time slot t ; otherwise no packets in
this queue will be transmitted. And Dek

c (t) corresponds to the
transmission decision to the enhancement-layer transmission
queue of camera c.

B. Problem Formulation

Denote the time-average user utility obtained by
transmitting the video stream from a camera c by
ūc(T ) = (1/T )

∑T
t=1[u( f c,b

t )Db
c (t) +∑

ek∈E u( f c,e
t )Dek

c (t)].
Our objective is to maximize the overall time-average utility
from the perspective of a CVR user. Thus, we can formulate
it into the following optimization problem:

P1 : max lim
T→∞

∑

c∈C
ūc(T )

s.t.
∑

c∈C
bc(t) ≤ B ∀t (a)

Dek
c (t) ≤ Db

c (t) ∀c ∈ C, ek ∈ E, t (b)

De2
c (t) ≤ De1

c (t) ∀c ∈ C, e1 ≺ e2, t (c)
(

mc,b
t Db

c (t)+
∑

ek∈E
mc,ek

t Dek
c (t)

)

· l ≤ bc(t)τ (d)

lim
T→∞ ūc(T ) ≥ u0 ∀c ∈ C (e)

Dek
c (t) ∈ {0, 1} ∀c ∈ C, ek ∈ E, t ( f )

Db
c (t) ∈ {0, 1} ∀c ∈ C, t (g)

0 ≤ bc(t) ≤ B ∀c ∈ C, t (h)

variables: bc(t), Db
c (t), Dek

c (t) ∀c ∈ C, ek ∈ E, t .

In the above formulated problem, constraint (a) indicates
the upper bound for the AP transmission rate. Constraint (b)
captures the dependency between the base-layer video frame
and the enhancement-layer video frames, while constraint (c)
shows the dependency relationship ≺E among enhancement
layers. Constraint (d) indicates that all chosen packets from a
camera c can be transmitted by the AP in time slot t , where
l denotes the size of video packet. Constraint (e) is used to
ensure that the minimum utility of each camera is over a
threshold u0 for fairness among all cameras.
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Note that wireless cameras are connected with the AP via
wireless channels, while the AP itself is normally connected
with the Internet through wireline networks (e.g., asymmet-
ric digital subscriber line and Ethernet). Thus, the maximal
upstream bandwidth capacity of the AP is set to a fixed
value B . In general, wireless cameras can have abundant
transmission bandwidth to the AP due to highly developed
WLAN techniques (such as 802.11n). Even if the avail-
able transmission bandwidth of a wireless camera varies
significantly due to channel condition fluctuations, we can
instead aim to maximize the time-average total expected
utility. In this case, the utility of a camera c in time slot t
can be defined as the weighted sum of uc(t), where the
weights are directly obtained from the probability distribution
of channel conditions. Thus, we remove wireless channel
conditions from the problem formulation, but the algorithm
design still follows the same scheme since the expected
utility case does not change the properties of the objective
function.

IV. DESIGN OF ONLINE RESOURCE ALLOCATION

ALGORITHM FOR VIDEO STREAM MULTIPLEXING

A. Problem Decomposition

To avoid the difficulty of user demand prediction, we
apply the Lyapunov optimization framework to design online
algorithms and solve the optimization problem P1. Lyapunov
optimization technique can satisfy the time-average constraints
by maintaining the status of a set of virtual queues. The
stochastic optimization problem can be converted to a set of
one-shot optimization problems, which maximize a weighted
sum of the instantaneous objective function and the size
of virtual queues. Even without predicting the value of the
objective function, Lyapunov optimization-based algorithm
can provide a bounded approximation to the optimal solution.

We first introduce a set of virtual queues H = {Hc, c ∈ C}
to mitigate the computational complexity brought by the time-
average constraint (e) in P1. The update on queue occupancy
is defined as follows:

Hc(t + 1) = max[Hc(t)− uc(t)+ u0, 0]
where uc(t) = u( f c,b

t )Db
c (t)+∑

e∈E u( f c,e
t )De

c(t) denotes the
CVR user utility of a camera c in time slot t . Then, we can
derive the following lemma.

Lemma 1: Constraint (c) in the optimization problem P1
can be equivalently transformed as below

lim
t→∞

Hc(t)

t
≤ 0 ∀c ∈ C.

Proof: From the queue update, we can observe that

Hc(t + 1) = max[Hc(t)− uc(t)+ u0, 0]
≥ Hc(t)− uc(t)+ u0.

Summing the inequality over T time slots, then we have

Hc(t)− Hc(1) ≥ T · u0 −
T∑

t=1

uc(t).

Dividing both sides of the above inequality by T , we have

Hc(T )

T
− Hc(1)

T
≥ u0 − 1

T

T∑

t=1

uc(t).

Calculating the time limit of the above inequality, we have

lim
T→∞

1

T

T∑

t=1

uc(t) ≥ u0 − lim
T→∞

Hc(T )

T
+ lim

T→∞
Hc(1)

T
.

Since Hc(1) is a constant, the constraint limT→∞ ūc ≥ u0
is equivalent to limt→∞(Hc(t)/t) ≤ 0, which proves the
lemma.

Define the Lyapunov function as L(t) = (1/2)
∑

c∈C H 2
c (t).

Then, the one-shot evolution of the Lyapunov function
�(L(t)) satisfies the following condition:
�(L(t)) = E[L(t + 1)− L(t)|H(t)]

≤
∑

c∈C

1

2

[
(Hc(t)− uc(t)+ u0)

2 − H 2
c (t)|H(t)

]

≤
∑

c∈C

[

(u0 − uc(t))Hc(t)+ 1

2
(u0 − uc(t))

2|H(t)

]

≤
∑

c∈C
[(u0 − uc(t))Hc(t)+ (u0 − umax)

2|H(t)]

=
∑

c∈C
[(u0 − uc(t))Hc(t)|H(t)] + N · (u0 − umax)

2

where umax denotes the maximum utility of all cameras.
By exploiting the Lyapunov optimization framework, the opti-
mization problem P1 can be transformed into the following
one-shot problem:

P2 : min
∑

c∈C
(u0 − uc(t))Hc(t)− V · uc(t)

s.t. (a)(b)(c)(d)( f )(g)(h).

Denote the decision that a camera c chooses at time
slot t by Dc(t) = (Db

c (t), De1
c (t), De2

c (t), . . . , DeK
c (t)),

ek ∈ E, k ∈ [1, K ], and the set of all decisions as
Dc(t) = {Dc(t)|(b)(c)( f )(g)}. Each camera c can choose
only one decision Dc(t) from the set Dc(t) at each time
slot. Define x(Dc(t)) ∈ {0, 1} indicating whether camera c
chooses the decision Dc(t). Note that transmission decisions of
a camera are obtained from resource allocation decisions made
by the AP. Then, we can transform the constraints (b), (c), ( f ),
and (g) in the optimization problem P2 into the following
simple constraint:

∑

Dc(t)∈Dc(t)

x(Dc(t)) ≤ 1 ∀c ∈ C. (i)

Lemma 2: The one-shot optimization problem P2 is
NP-hard.

Proof: To prove the NP-hard property of the problem
P2, we aim to build a polynomial-time reduction to P2 from
the knapsack problem which has been proven to be NP-hard.
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The general knapsack problem is defined as follows:

max
x

n∑

i=1

vi xi

s.t.
n∑

i=1

ωi xi ≤ W

xi ∈ {0, 1}.
Denoting uc(t) = uc(Dc(t)), we can map the variables in P2
to parameters in the above problem as follows:

vi = −u0 Hc(t)+ (V + Hc(t))uc(Dc(t))

xi = x(Dc(t)) ∀c ∈ C, Dc(t) ∈ Dc(t)

ωi =
(

mc,b
t Db

c (t)+
∑

e∈E
mc,e

t De
c(t)

)

· l

W = B.

Thus, it is clear that there exists a polynomial-time reduction
algorithm. Problem P2 has an additional constraint (i). Since
the knapsack problem is NP-hard, then Problem P2 must also
be NP-hard.

To reduce the computational complexity of the one-
shot optimization problem P2, we use an approximate
approach to obtain good-enough solutions. Denoting
ωc(Dc(t)) = (mc,b

t Db
c (t) + ∑

e∈E mc,e
t De

c(t)) · l, and
ũc(Dc(t)) = −(u0 Hc(t) − (V + Hc(t))uc(Dc(t))), we
simplify the representation of Problem P2 as follows:

P3 : max
∑

c∈C

∑

Dc(t)∈Dc(t)

ũc(Dc(t))x(Dc(t))

s.t.
∑

Dc(t)∈Dc(t)

x(Dc(t)) ≤ 1 ∀c ∈ C
∑

c∈C

∑

Dc(t)∈Dc(t)

ωc(Dc(t))x(Dc(t)) ≤ Bτ

x(Dc(t)) ∈ {0, 1} ∀c ∈ C.

To overcome the NP-hardness of Problem P3, we first relax
the last constraint to the following one:

x(Dc(t)) ≥ 0 ∀c ∈ C.

Then, we introduce two sets of dual variables
λ = {λc, c ∈ C} and μ for the first two constraints,
and we can obtain a dual problem of P3 as follows:

P4 : min
∑

c∈C
λc + Bτ · μ

s.t. λc + ωc(Dc(t))μ ≥ ũc(Dc(t))

∀Dc(t) ∈ Dc(t), c ∈ C
μ ≥ 0, λc ≥ 0 ∀c ∈ C.

The problem transformation process can be summarized
as follows. First, the original optimization problem P1 is
transformed to the one-shot optimization problem P2 based
on the Lyapunov optimization framework. Next, Problem P3
is formulated as a relaxed version of P2 so that it is simpler to
find approximate algorithms to solve the problem. To design
an approximate algorithm for the NP-hard problem P3, P4 is
the dual problem of P3.

Algorithm 1 Approximate One-Shot Algorithm
Input:

Bandwidth capacity B;
Decision set Dc(t),∀c ∈ C;
Queue state H(t);
Tradeoff parameter V ;
Utility threshold u0;
Utility function uc(Dc(t)),∀c ∈ C, Dc(t) ∈ Dc(t);
Bandwidth requirement function:

ωc(Dc(t)),∀c ∈ C, Dc(t) ∈ Dc(t).
Output:

Transmission decision Dc(t),∀c ∈ C.
1: Initialization step: x(Dc(t)) = 0,∀c ∈ C, Dc(t) ∈

Dc(t),λc = 0,∀c ∈ C, μ = 1, u(t) = 0,
Q = ø, � = minc∈C,Dc(t)∈Dc(t)

Bτ
ωc(Dc(t))

, � =
maxc∈C,Dc(t)∈Dc(t) ωc(Dc(t)).

2: while μ < exp (�− 1) AND Q 	= C do
3: for ∀c ∈ C \Q do
4: D∗c (t) = arg maxDc(t)∈Dc(t) ũc(Dc(t));
5: end for
6: c∗ = arg maxc∈C\Q{ ũc(D∗c (t))

ωc(D∗c (t))μ};
7: xc∗(D∗c∗(t)) = 1, λc∗ = ũc∗(D∗c∗(t));
8: u(t) = u(t)+ ũc∗(D∗c∗(t)),Q = Q⋃{c∗};
9: μ = μ · (exp (�− 1))ωc∗ (D∗c∗(t))/(Bτ−�);

10: end while

To reduce the computational complexity of solving the
original problem, we design an approximate algorithm to
obtain solutions to Problem P4. The details of our proposed
algorithm are shown in Algorithm 1.

Lemma 3: The solution achieved by Algorithm 1 is feasible
to Problem P3.

Proof: We first examine whether the solution satis-
fies the first constraint and the third constraint. For the
first constraint, line (4) and line (8) indicate that each
selected camera c∗ will be chosen once and only one
corresponding decision D∗c (t) will be made. Thus, it is
obvious that

∑
Dc∗ (t)∈Dc∗(t) x(Dc∗(t)) = 1. For the cam-

eras c that are not chosen by Algorithm 1, it is true that∑
Dc(t)∈Dc(t) x(Dc(t)) = 0. For the third constraint, all the

x(Dc(t)) are initialized to 0, and line (7) indicates that the
value of x(Dc(t)) can only be updated to 1.

Then, for the second constraint, if the set of selected
cameras in the previous (r−1) rounds is denoted by C̃, and the
chosen camera in the r th round is c′. If the following condition
is true, we have:

∑

c∈C̃
ωc

(
D∗c (t)

) ≤ Bτ

ωc′
(
D∗c′ (t)

)+
∑

c∈C̃
ωc

(
D∗c (t)

) ≥ Bτ.

Then, since the maximum bandwidth requirement of a sin-
gle camera cannot exceed the bandwidth capacity, that is,
ωc′ ≤ � < Bτ , we can derive

∑

c∈C̃
ωc

(
D∗c (t)

) ≥ Bτ − �.
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Thus, it is true that
∑

c∈C̃ ωc
(
D∗c (t)

)

Bτ − �
≥ 1.

The value of μr−1 in the r−1th round is calculated as follows:

μr−1 = (exp (�− 1))

∑

c∈C̃ ωc(D∗c (t))

Bτ−�

≥ exp (�− 1)

which indicates that the iteration will stop at the end of the
(r − 1)th round, and the camera c′ will not be selected.
Therefore, the second constraint is satisfied.

Note that the definition of utility function uc(Dc(t)) depends
on multiple factors, including the information contained in a
video frame and the transmission cost of receiving a video
frame. The maximal size of decision set Dc(t) is |E |+1. Even
using a brutal search method, the computational complexity
of line (4) is O((|E | + 1) · N). Moreover, the number of
iterations is upper bounded by the number of cameras N ,
thus the overall computation complexity of Algorithm 1 is
O((|E | + 1) · N2), which indicates that Algorithm 1 is a
polynomial-time algorithm.

Next, we will continue to derive the approximation ratio
of Algorithm 1. Although Lemma 3 ensures the feasibility of
the solution to the primal variables of the problem P3, it is
possible that the values of the dual variables λ and μ violate
the constraints of Problem P3. By adopting the dual fitting
techniques, we can find a good fitting method to ensure the
feasibilities of dual variables.

Lemma 4: The values of dual variables in the r − 1th
round are denoted by (λr−1, μr−1). It ensures that
(λr−1, δh(μr−1, c∗r )μr−1) is feasible to the dual problem P4,
where h(μr−1, c∗r ) = (ũc∗r (D∗c∗r (t))/ωc∗r (D∗c∗r (t))μr−1),
δ = maxD′c(t), D′′c (t)∈Dc(t), c∈C(ωc(D′c(t))/ωc(D′′c (t))), and
c∗r represents the chosen camera in the r th round iteration.

Proof: In line (7) of Algorithm 1, we can observe
that λc∗ is updated to ũc∗(D∗c∗(t)). And λc∗ ≥ ũc∗(Dc∗(t)),
∀Dc∗(t) ∈ Dc∗(t) \ D∗c∗(t). Thus, the first constraint of P4 is
satisfied for the cameras in the set Q. As for the camera c in
the set C \Q, we have

h
(
μr−1, c∗r

) =
ũc∗r

(
D∗c∗r (t)

)

ωc∗r
(
D∗c∗r (t)

)
μr−1

≥ ũc
(
D∗c (t)

)

ωc
(
D∗c (t)

)
μr−1

∀c ∈ C \Q.

Thus, it is true that

h
(
μr−1, c∗r

)
ωc

(
D∗c (t)

)
μr−1 ≥ ũc

(
D∗c (t)

)
.

From the definition of δ, we have

δ ≥ ωc
(
D′c(t)

)

ωc
(
D′′c (t)

) ≥ 1.

Therefore, we can obtain the following expression:
δh

(
μr−1, c∗r

)
ωc

(
D∗c (t)

)
μr−1 ≥ δũc

(
D∗c (t)

) ≥ ũc(Dc(t))

∀c ∈ C \Q, Dc(t) ∈ Dc(t).

Therefore, (λr−1, δh(μr−1, c∗r )μr−1) is feasible to the opti-
mization problem P4.

The selection process of Algorithm 1 and the dual fitting
process determine the approximation ratio of Algorithm 1.
We will continue to investigate the impacts of the above
two processes by the following theorem.

Theorem 1: The approximation ratio of Algorithm 1 is
η = 1+ δ(�/�− 1)(e − 1).

Proof: Denote the values of dual variables in the r th
iteration by (λr , μr ). And the last iteration of Algorithm 1
is denoted by R. We will derive the approximation ratio when
Algorithm 1 stops under different conditions.

If the stopping condition is Q = C and μ < exp (�− 1).
Lemma 3 proves the feasibility of the solution to Problem P3.
The dual fitting techniques mentioned in Lemma 4 also ensure
the feasibility to Problem P4. The weak duality of linear
programming relaxation indicates that any feasible solution
to the dual problem P3 is an upper bound of Problem P4.
Thus, the solution obtained by Algorithm 1 is an optimal
solution to Problem P3, which indicates that the approximation
ratio is 1.

If the stopping condition is μr ≥ exp (�− 1), we consider
the case that satisfies ∃r ≤ R, η < (y/

∑
c∈C λr

c), where
y denotes the optimal result of the Problem P4. Since we have∑

c∈C λr
c = ur (t) and the nondecreasing property of ur (t), the

approximation ratio (y/
∑

c∈C λr
c) must be less than η when

the iteration continues. If for all r ≤ R, η < (y/
∑

c∈C λr
c),

then

μr = (exp (�− 1))ωc∗
(

D∗c∗ (t)
)
/(Bτ−�) · μr−1

= [(exp (�− 1))
�

Bτ−� ]ωc∗
(

D∗c∗ (t)
)
/� · μr−1

=
[

1+ 	
Bτ
� − 1

]ωc∗
(

D∗c∗ (t)
)
/�

· μr−1

where 	 = ((Bτ/�) − 1)[(exp (�− 1))(1/(Bτ/�)−1) − 1].
Since � ≥ ωc∗(Dc∗(t)),∀Dc∗ (t) ∈ Dc∗(t), and (1 + a)x ≤
1+ ax,∀x ∈ [0, 1], we have

[

1+ 	
Bτ
� − 1

]ωc∗
(

D∗c∗ (t)
)
/�

≤ 1+ 	ωc∗
(
D∗c∗(t)

)

Bτ − �
.

Moreover, since � = (Bτ/�), we have

Bτμr ≤ Bτ ·
(

1+ 	ωc∗
(
D∗c∗(t)

)

Bτ − �

)

· μr−1

= Bτμr−1 + Bτ

Bτ − �
	ωc∗

(
D∗c∗(t)

)
μr−1

= Bτμr−1 + Bτ

Bτ − �

(
Bτ

�
− 1

)

×
[

(exp (�− 1))
1

Bτ
�

−1 − 1

]

= Bτμr−1 �

�− 1
(�− 1)

×[
(exp (�− 1))

1
�−1−1]ωc∗

(
D∗c∗(t)

)
μr−1

= Bτμr−1 +�(e − 1)ωc∗
(
D∗c∗(t)

)
μr−1.
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From the definition of the function h(μr−1, c∗r ), we have

ωc∗r
(
D∗c∗r (t)

)
μr−1 = ũc∗

(
D∗c∗r (t)

)
/h

(
μr−1, c∗r

)
.

Note that ur (t) − ur−1(t) = ũc∗r (D∗c∗r (t)); thus, the update
of Bτμ satisfies the following condition:

Bτμr ≤ Bτμr−1 +�(e − 1)
ur (t)− ur−1(t)

h
(
μr−1, c∗r

) .

Considering the dual fitting process mentioned in Lemma 4,
the dual variables (λr−1, δh(μr−1, c∗r )μr−1) are feasible to the
dual problem P4, we have

y ≤
∑

c∈C
λc + δh

(
μr−1, c∗r

)
Bτμr−1.

We can further derive the bound of the function h(μr−1, c∗r )
as follows:

h
(
μr−1, c∗r

) ≥ y −∑
c∈C λc

δBτμr−1 .

Given that the approximation ratio η satisfies η <
(y/

∑
c∈C λr

c),∀c ≤ R. Then

1

h
(
μr−1, c∗r

) ≤ δ
Bτμr−1

y −∑
c∈C λc

≤ δ
η

η − 1

Bτμr−1

y
.

The approximation ratio after R iterations can be calculated
as follows:
BτμR ≤ BτμR−1

+ δ�(e− 1)(u R(t)− u R−1(t))
η

η − 1

BτμR−1

y

= BτμR−1
(

1+ δ�(e− 1)
η

η− 1

u R(t)− u R−1(t)

y

)

≤ Bτμ0 exp

(

δ�(e − 1)
η

η − 1

u R(t)

y

)

where the last inequality is evaluated via the fact
1 + x ≤ ex ,∀x ≥ 0. From the stopping condition
μR ≥ exp(�− 1) and μ0 = 1, we can have

exp (�− 1) ≤ exp

(

δ�(e − 1)
η

η− 1

u R(t)

y

)

.

Thus

y

u R(t)
≤ δ

�(e− 1)

�− 1

η

η − 1
.

As the solution obtained by Algorithm 1 is feasible to
Problems P3 and P4, the weak duality of linear programming
relaxation indicates that (y/u R(t)) is the upper bound of the
approximation. Therefore

δ
�(e− 1)

�− 1

η

η − 1
≤ 1+ δ

�(e − 1)

�− 1

1

η − 1

≤ 1+ δ
�(e − 1)

�− 1
= η.

Thus, the approximation ratio of Algorithm 1 is η, which
proves the theorem.

Algorithm 2 Online Approximation Algorithm for Bandwidth
Resource Allocation
Input:

Same as that in Algorithm 1.
Output:

Transmission decision D∗c (t),∀c ∈ C, t , bandwidth alloca-
tion decision b∗c (t),∀c ∈ C, t .

1: Initialization step: t = 0, Hc(0) = 0,∀c ∈ C.
2: while CVR service is active do
3: Calculate the transmission decisions {D∗c (t),∀c ∈ C}

according to Algorithm 1.
4: Calculate the bandwidth allocation decisions {b∗c (t),
∀c ∈ C} according to the transmission decisions
{D∗c (t),∀c ∈ C}.

5: Update each queue according to Hc(t+1) = max[Hc(t)−
uc(t)+ u0, 0].

6: Set t ← t + 1.
7: end while

B. Online Approximation Algorithm

After utilizing the Lyapunov decomposition techniques,
the approximate online resource allocation algorithm can be
realized through solving the one-shot problem P2 in each time
slot. However, the computational infeasibility of the one-shot
problem motivates us to exploit Algorithm 1 to obtain a good-
enough solution to the one-shot problem. By integrating the
Lyapunov optimization algorithm and Algorithm 1, we obtain
the final design of the online bandwidth resource allocation
algorithm shown in Algorithm 2.

For line (4) of Algorithm 2, given the transmission decision
D∗c (t), the allocated bandwidth for a camera c is calculated
by b∗c (t) = (mc,b

t Db
c (t)+∑

e∈E mc,e
t De

c(t)) · l/τ .
Theorem 2: Denoting the optimal time-average overall util-

ities by ū∗, then the solution obtained by Algorithm 2 satisfies
the following condition:

lim
T→∞

∑

c∈C
ūc(T ) ≥ ηū∗ − 


V

where 
 = N(u0 − umax)
2, and η denotes the approximation

ratio of Algorithm 1.
Proof: The Lyapunov drift-plus-penalty function is

defined as follows:
�(L(t))− V

∑

c∈C
uc(t) ≤

∑

c∈C
[(u0 − uc(t))Hc(t)|H(t)]

+ N(u0 − umax)
2 − V

∑

c∈C
uc(t).

If the distribution of the utility function can be known
beforehand, we can design a stationary randomized algorithm
which purely depends on the probability distribution and
achieves the optimal value ū∗. Moreover, it has been proven
that any online algorithm cannot improve the solution of the
stationary randomized algorithm.

Denoting f (t) = ∑
c∈C [(u0 − uc(t))Hc(t)|H(t)] −

V
∑

c∈C uc(t), we define the optimal value of Problem P3 as
f̄ (t), and the optimal value to Problem P2 as f ∗(t). It is true
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Fig. 3. Illustration on the implementation of Algorithm 2.

that f̄ (t) = − f ∗(t). From the approximation of Algorithm 1,
we know that the value of f (t) ≤ −η f̄ (t) = η f ∗. Since the
stationary randomized algorithm can satisfy that u0 ≤ ū∗c , we
have

�(L(t))− V
∑

c∈C
uc(t) ≤ 
+ η

∑

c∈C

[(
u0 − ū∗c

)
Hc(t)|H(t)

]

−ηV ū∗ ≤ 
− ηV ū∗

where 
 = N(u0 − umax)
2. Thus

�(L(t)) ≤ 
− ηV ū∗ + V
∑

c∈C
uc(t).

We can further obtain

L(H(T ))− L(H(1)) ≤ T 
− TηV ū∗ + V
T∑

t=1

∑

c∈C
uc(t).

Dividing both sides of the above inequality, we have

L(H(t))

T
− L(H(1))

T
≤ 
− ηV ū∗ + V

1

T

T∑

t=1

∑

c∈C
uc(t).

Taking the limitation T →∞, we have

lim
T→∞

∑

c∈C
ūc(t) ≥ ηū∗ − 


V

which proves the theorem.
Theorem 2 indicates that the distance between the solution

achieved by Algorithm 2 and the η-approximate optimal
solution can be controlled by the parameter V within any small
distance.

From the description of Algorithm 2, we can observe that
our strategy can be divided into two separate components.
An illustrative example on how to implement Algorithm 2 is
shown in Fig. 3. Each camera needs to maintain its own virtual
queue, and sends the updated status of virtual queues to the
controller implemented in the AP. After receiving the status
of virtual queues from all cameras, the controller will run
Algorithm 1 to calculate the resource allocation decisions for
the next time slot. Then, the controller will send decisions back
to all cameras, and cameras can adapt the video playback rate

Fig. 4. Simulation scenario with four wireless cameras and one AP.

according to the resource allocation decisions. Moreover, there
are several possible approaches to implement our proposed
algorithm in real CVR systems. In our system model, we
consider the case that the AP can be customized by the
designer (e.g., using OpenWRT [37]). The concept of media
cloud [29], [30] indicates that it is also feasible to implement
the algorithm on the edge server. For different approaches,
it is important to take various factors, such as the access to
physical hardware, the difficulty in customizing hardware, into
account during algorithm implementation.

V. PERFORMANCE EVALUATION

In this section, we conduct a set of real-trace driven simula-
tions to evaluate the effectiveness of our proposed algorithm.

A. Evaluation Settings

In our experiments, the upstream bandwidth capacity B
of the AP is set as 4 Mb/s, which is less than the amount
to transmit all layers of all video streams simultaneously.
There are four wireless cameras in the monitored region and
the simulation scenario can be shown in Fig. 4. For each
video stream, there are three layers whose playback rates are
0.5, 1, and 2 Mb/s, respectively. Note that, the playback rate of
a video layer means the amount of bandwidth resource needed
to transmit video packets up to this layer. The value of V is
set to be 10, the number of time slots is 450, and the length
of one time slot is 1 s.

As the utility of a CVR user is affected by multiple fac-
tors, such as streaming rate and video content characteristics.
We consider three types of utility function in our simulation.

1) Rate-Based Utility Function (RUF): The utility received
by a CVR user increases concavely with the streaming
rate [7], [35]. Specifically, the utility is defined as a
function of the number of video layers transmitted from
the camera. That is, the utility function uc(t) is defined
as follows:

uc(t) = log

(

1+ Db
c (t)+

∑

e∈E
De

c(t)

)

.

2) Content-Based Utility Function (CUF): Video content in
each video frame determines the information that a CVR
user can obtain from that frame [34]. We use the number
of moving objects in a video frame to represent the
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Fig. 5. Number of moving objects in each video frame.

volume of video content. Denote the number of moving
objects in the video frame f c

t by oc
t , then the utility

function is given as follows:
uc(t) = υb Db

c (t) log
(
oc

t

)+
∑

e∈E
υe De

c(t) log
(
oc

t

)

where υ is the importance priority of a video layer.
3) Weighted Utility Function (WUF): It is a linear weighted

sum of RUF and CUF.
At first, we evaluate the bandwidth resource allocation

strategies under RUF and CUF, respectively. When consid-
ering RUF, one video stream consists of one base layer and
two enhancement layers, which correspond to the playback
rate 0.5, 1, and 2 Mb/s. When specifying the utility as CUF, we
analyze the number of moving objects in four different video
streams, which is shown in Fig. 5. The four video streams
represent different scenarios, including nearly static and highly
active scenarios. Note that we have used 20 representative
video streams in total from a CVR service provider, and all
of our experiment results are based on these real video traces.

We denote the bandwidth resource allocation strategy illus-
trated by Algorithm 2 as CRA cooperative resource allo-
cation (CRA) algorithm, and also implement several other
algorithms in our simulations for the sake of comparison.

1) Static Resource Allocation (SRA): The amount of
bandwidth resource allocated to each video stream is
determined at the beginning of transmission and the
allocation will keep unchanged.

2) Least Required Resource Allocation (LRA): At each time
slot, the transmission of the base-layer video content is
ensured for each video stream. The unallocated upstream
bandwidth will be allocated among video streams evenly.

B. Simulation Results

Fig. 6 shows the allocation strategies on upstream band-
width for transmitting the first 100 frames under different
types of utility functions. From Fig. 6(a), we can observe that
upstream bandwidth is allocated to each video stream in a
time-divided manner. However, when defining utility function
based on the number of moving objects, more upstream
bandwidth will be allocated to video streams with more
moving objects, such as video stream 4, which has the largest
number of moving objects across the first 100 frames shown

Fig. 6. Upstream bandwidth allocation under different types of utility
functions. (a) Bandwidth allocation under RUF. (b) Bandwidth allocation
under CUF. (c) Bandwidth allocation under WUF.

in Fig. 6(b). In this case, video streams with few moving
objects can hardly obtain bandwidth resource.

The results shown in Fig. 6 show that CRA allocates
upstream bandwidth in an ON–OFF pattern due to the time-
average constraint (e) in P1. If we need to force CRA to
guarantee that the utility for each video stream at each time
slot is higher than the basic utility requirement u0 (that is
uc(t) ≥ u0,∀t, c), we can simply allocate the basic required
bandwidth for each video stream before running CRA at
each time slot. CRA will determine how to allocate the left
bandwidth resource.

Fig. 6(c) shows that the first video stream can be allocated
with more bandwidth than the case in Fig. 6(a) under WUF
when the weight is set to 0.5. Moreover, we illustrate the
time-average user-received utility when tuning the weight
from 0 to 1 in Fig. 7. A larger α results in allocating upstream
bandwidth periodically, while a smaller α puts more weights
on the factor of the number of moving objects. Under the
above definition of utility functions, when transmitting video
frames with the highest rate, the value of CUF can be higher
than RUF if the number of moving objects is large. From
Fig. 6(c), we can observe that the first video stream can
also be allocated with upstream bandwidth even if it has
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Fig. 7. Time-average weighted utility when varying the weight.

Fig. 8. Cumulative utility under different bandwidth resource allocation
strategies.

almost no moving objects. However, the amount of upstream
bandwidth allocated to video stream 1 is much less than that
under RUF. Since the bandwidth value of zero indicates that
the corresponding video frames will not be available. Thus,
the weighted utility function is an efficient way to balance
video frame availability and utility.

If the utility function is defined based on streaming rate,
then the user-received utility of each frame is deterministic
under SRA and LRA. Thus, we analyze the user utility defined
by CUF. Fig. 8 shows the cumulative utility under different
bandwidth resource allocation strategies. The SRA strategy
allocates the upstream bandwidth resource evenly to video
streams. And the LRA strategy allocates sufficient bandwidth
to each video stream to ensure that user-received utility can
exceed the utility threshold u0. From Fig. 8, we can see that the
proposed CRA strategy can increase the user-received utility
by 21% and 32% compared with that under LRA and SRA,
respectively.

To maximize the overall utility, it is desirable to fully
utilize each bandwidth unit as much as possible. We define
a metric called average utility per bandwidth unit
(e.g., 1 kb/s) to verify how well each resource allocation
strategy achieves the goal. The measure of the average utility
per bandwidth unit is calculated by dividing the utility of each
video frame by the bandwidth allocated for transmitting that
frame.

Fig. 9 shows the CDF of average utility across 450 video
frames. We only conduct the experiments under CUF since
all resource allocation strategies achieve the constant average
utility per bandwidth unit under RUF. The SRA strategy
can achieve the lowest average utility since its decisions
are independent of the number of objects in video frames.

Fig. 9. Average utility per bandwidth unit under different bandwidth resource
allocation strategies.

Fig. 10. Average utility with various numbers of streams under CUF.

Although the CRA results in that 10% of bandwidth has an
average utility value lower than 4, it can also make around 20%
of bandwidth have an average utility value higher than 6.
Under LRA, all bandwidth will at least have an average utility
value of 4. Since we do not exploit prediction technologies, the
greedy allocation of CRA will not divide the bandwidth into
different streams even though all of them have objects. The
CRA strategy makes decisions based on the number of objects
in several past frames instead of the instantaneous video frame.
If the video streams have a similar number of objects in some
frames, LRA can obtain more utilities by dividing bandwidth
evenly across all video streams. However, the CRA strategy
can still ensure that around 20% of bandwidth has a higher
average utility value than that under the LRA strategy. The
diversities of the number of objects in different streams across
video frames can guarantee that CRA achieves much higher
utility than that of other strategies.

With the increasing number of video streams, the short-
age of upstream bandwidth will be even worse. Instead of
provisioning more bandwidth, it is expected that the resource
allocation strategy can exploit the existing resource in a better
way. To evaluate whether the CRA strategy is robust to the
increasing number of video streams, we choose 20 video
streams from our data traces, and randomly select several
of them to feed into our experiments. When the number of
streams is smaller than 5, we found that upstream bandwidth
is not fully utilized and the average utility is lower than
that in other cases. If we vary the number of video streams
from 5 to 20, the average utility obtained in all of these
cases remains around 6.5, as shown in Fig. 10. Therefore,
even if the shortage of upstream bandwidth becomes more
severe, the CRA strategy can still ensure upstream bandwidth
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Fig. 11. Bandwidth allocation decision under different priority settings.
(a) RUF. (b) CUF.

is allocated to video frames who have a high utility value.
Note that if we classify streams into multiple classes based
on the average number of moving objects (e.g., <10, 10–50,
and >50 objects), the ratio between the maximal average
utility and the minimal utility within each class is around 1.5.
Considering the weighted utility function, the ratio can be
reduced to around 1.2. Thus, the weighted utility function can
help to improve fairness across video streams.

Our approach allows the differentiation of video streams
according to user preference settings. In our simulations, we
specify the priorities of video streams by assigning different
baseline utility requirements c0 to each camera. In the exper-
iment, we set the priorities of the first three video streams to
the same value, and set the priority of the fourth video stream
to a higher value.

Fig. 11 shows the distribution of video frames of the fourth
video stream, in which the AP allocates 0 or 2 Mb/s, respec-
tively. The distribution of video frames can characterize the
bandwidth allocation decision distribution. Due to the greedy
allocation property of the CRA strategy, one video frame can
only be allocated with either the highest transmission rate or
no bandwidth. From Fig. 11, we can observe that the CRA
strategy under RUF is more sensitive to priority variations than
the CRA strategy under CUF. Specifically, when increasing

the priority to the second video stream, the fraction of video
frames being transmitted with 2 Mb/s under RUF is 20% larger
than that under CUF. These results show that our CRA strategy
can well adapt to different user preferences.

VI. CONCLUSION AND DISCUSSION

In this paper, we proposed an intelligent bandwidth
allocation algorithm to achieve efficient upstream bandwidth
multiplexing among distributed cameras in CVR services.
After formulating the problem as a constrained stochastic
optimization problem, we exploited the Lyapunov optimization
framework to decompose the problem and explicitly proved
their NP-hardness. To tackle the problem, we further proposed
an approximation algorithm to solve the decomposed
problems. By applying Lyapunov decomposition and integer
approximation techniques, we designed a hierarchical approx-
imation algorithm called CRA to reduce the high computation
complexity and avoid the use of any prediction. We also
explicitly proved the approximation ratio of our proposed CRA
algorithm. By conducting extensive trace-driven simulations,
we demonstrated that our proposed algorithm improves the
user-received utility by more than 20%, and ensures the
stability of the average utility per bandwidth unit even with
the increasing number of video streams under constrained
bandwidth capacity. Our algorithm can also take the priority
of video streams into account according to user preference,
and increase upstream bandwidth allocation to video streams
with a higher priority. In our future work, we plan to
implement our algorithm in a real CVR system and further
explore the effectiveness of other types of utility functions.
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