
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, Jan. 2016 1
Copyright ⓒ2016 KSII

Flow Scheduling in OBS Networks Based on
Software-Defined Networking Control

Plane

Wan Tang1, Fan Chen1, Min Chen2, Guo Liu1
1 College of Computer Science, South-Central University for Nationalities

Wuhan 430074, China
[e-mail: tangwan@scuec.edu.cn; chenfan_wh@outlook.com; liuguo@mail.scuec.edu.cn]

2 School of Comupter Science and Technology, Huazhong University of Science and Technology
Wuhan 430074, China

[e-mail: minchen2012@hust.edu.cn]

Received October 12, 2015; revised October 24, 2015; accepted November 13, 2015;
published January 31, 2016

Abstract

The separated management and operation of commercial IP/optical multilayer networks
makes network operators look for a unified control plane (UCP) to reduce their capital and
operational expenditure. Software-defined networking (SDN) provides a central control plane
with a programmable mechanism, regarded as a promising UCP for future optical networks.
The general control and scheduling mechanism in SDN-based optical burst switching (OBS)
networks is insufficient so the controller has to process a large number of messages per second,
resulting in low network resource utilization. In view of this, this paper presents the burst-flow
scheduling mechanism (BFSM) with a proposed scheduling algorithm considering channel
usage. The simulation results show that, compared with the general control and scheduling
mechanism, BFSM provides higher resource utilization and controller performance for the
SDN-based OBS network in terms of burst loss rate, the number of messages to which the
controller responds, and the average latency of the controller to process a message.

Keywords: Optical burst switching (OBS); Software-defined networking (SDN);
OpenFlow; Unified control plane (UCP); Flow scheduling

This work is supported in parted by the National Natural Science Foundation of China (NSFC) (No. 61103248 and
No. 61572220), China Ministry of Science and Technology (MOST), the International Science and Technology
Collaboration Program (Project No. 2014DFT10070), and the State Key Laboratory of Advanced Optical
Communication Systems & Networks, China.

http://dx.doi.org/10.3837/tiis.2016.01.001 ISSN : 1976-7277

2 Wan Tang et al.: Flow Scheduling in OBS Networks Based on Software-Defined Networking Control Plane

1. Introduction

Optical fibers are ideal transfer media for the growing traffic demands in metro and
long-haul networks, providing vast capacity and offering steady long-reach transmission [1].
As the most mature optical switching technology, optical circuit switching (OCS) can provide
guaranteed quality of service (QoS), but the wavelength utilization is inadequate [2]. Being the
ideal optical switching, optical packet switching (OPS) can achieve high utilization; however,
the immature optical processing technologies make it impractical. Fortunately, optical burst
switching (OBS) [3] is proposed as a compromise between OCS and OPS, taking advantage of
optical network performances and using the burst control packet (BCP) for advance
reservations. Therefore, OBS is regarded as a more promising optical switching technology.

However, nowadays, commercial IP/optical multilayer networks are managed and operated
separately, leading to inefficient network operation, resource waste, and high capital and
operational expenditure [4, 5]. In order to solve those problems, network operators need to
seek a unified control plane (UCP) that combines the management and operation of multiple
layers [6]. A distributed control plane, called generalized multi-protocol label switching
(GMPLS), is proposed to address the separate management in IP/optical multilayer networks,
but it is overcomplicated. The GMPLS-based UCP proposed in [7] can provide unified
management for OBS networks and wavelength switched optical networks (WSONs), but the
information delivery among different nodes is unstable and complex due to the distributed
nature of the GMPLS protocol [8]. Meanwhile, the experimental validation and evaluation of a
GMPLS-based UCP is provided to process a multi-protocol label switching transport profile
(MPLS-TP) in WSON [9]. Nevertheless, the hardware flexibility is insufficient because the
standardization of GMPLS lags behind its hardware development [8]. Therefore, GMPLS is
incompetent in offering a promising UCP for the future optical network.

Software-defined networking (SDN) [10], a novel network architecture proposed in 2009,
extracts the control plane from the data plane of physical hardware and provides a
programmable mechanism, operating and managing most parts of the network using the
central controller(s). Providing high scalability and flexibility for SDN, OpenFlow is the most
common communication protocol between the control layer and the forwarding layer in SDN
architecture [11]. In an OpenFlow-based SDN, the flow table, maintained in network devices
(e.g. OpenFlow-enabled switches), decides the forwarding method of packets and is generated
and configured by the central controller. Regarded as a promising UCP for future optical
networks, the OpenFlow-based SDN can operate and manage IP/optical multilayer networks
with different switching granularities, and provides high capacity and scalability and low
power consumption for optical transport networks [3,12].

The distributed control plane (e.g., GMPLS) is overcomplicated and requires high
performance on each node of the network. Conversely, the central control plane, such as the
SDN, transfers large amounts of computations from the nodes to the central controller and
reduces the functional requirement of each node. In addition, central control can improve the
BCP forwarding rate. A general control and scheduling mechanism for SDN-based OBS
networks is proposed in [4, 5]. Nevertheless, the source edge-node sends a Packet-In message
to the central controller after assembling a burst, which means that the central controller only
processes one burst when responding to a Packet-In message. If the network offered load is
high, the central controller and each OBS node have to process a large number of messages per
second, ultimately resulting in low network resource utilization, i.e., needing more bandwidth

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016 3

between the nodes and the controller, and enlarging the average latency for the controller to
process a message.

The application-based network operations (ABNO), an architecture published by the
Internet Engineering Task Force (IETF), provides a way for different network technologies
and use cases [12, 13]. The performance of the ABNO architecture for multilayer use cases
with control plane and with OpenFlow in the optical layer was validated by A. Aguado et al.
The ABNO architecture as a flexible SDN approach provides the support with non-OpenFlow
networks [14].

To address the issue of network resource utilization in the SDN-based OBS, in this paper,
we propose a burst-flow scheduling mechanism (BFSM) for SDN-based OBS networks. In
BFSM, the source edge-node buffers a certain number of bursts with the same source and
destination, and these bursts are composited into a burst-flow. The source edge-node sends
only one Packet-In message, containing the information of a burst-flow, to the controller to
process the bursts. Meanwhile, by introducing an extension of flow table structure based on
OpenFlow specification 1.0.0 [15] and improving the network applications in the controller
proposed in [3], a resource scheduling algorithm for BFSM is also proposed in our work.

The rest of this paper is organized as follows. In Section 2, we discuss the problem of the
general control and scheduling mechanism for SDN-based OBS networks. Section 3 describes
the BFSM, including the signaling procedure, the extension of the flow table structure in the
OBS nodes, and the network applications provided by the controller. Section 4 introduces the
resource scheduling algorithm applying in BFSM. Section 5 evaluates the performance of the
BFSM via simulation. Finally, a conclusion is drawn in Section 6.

2. Problem Description
Compared with electrical transport, optical transport has the advantages of high capacity, low
power consumption, and long-haul transmission. Not only will the optical network offer a
central control UCP, but it will also provide a high channel utilization rate and scalability if
introducing the OpenFlow-based SDN [11]. The OpenFlow-based SDN has been applied to
optical wavelength networks [16, 17], but the work is still at an early stage and too complex to
implement. Because prevailing electrical switching technologies cannot be directly applied to
the optical SDN, Patel et al. presented a software defined optical network (SDON) architecture
by spliting the control plane from the data plane. In addition, he discussed the key technologies
of SDON including physical hardware technologies, common interface, and controller
technologies [5].

In an SDN-based network, the controller is the scheduling and management center, and
plays an extremely important role. The performance of the OpenFlow controller is evaluated
in terms of the number of messages that a controller responds to per second, and the average
latency of the controller to process a message [18, 19, 20]. The most time-consuming
processes of a controller are those of reading the arrival OpenFlow messages from the network
interface cards (NICs) and communicating with the OpenFlow-enabled switches [21, 22].

A field trial of an OpenFlow-based UCP for multilayer multigranularity optical switching
networks was undertaken by Liu et al. to verify and evaluate the end-to-end latency, overall
feasibility and efficiency of the SDN-based OBS [8]. Zhang et al. introduced a general control
and scheduling procedure [4]. The source OBS edge-node sends out a Packet-In message to
the controller after assembling a burst, and the controller computes an end-to-end path for the
BCP of the burst. The controller inserts flow entries into all nodes along the BCP path except
the source, and inserts a flow entry into the source edge-node until receiving the

4 Wan Tang et al.: Flow Scheduling in OBS Networks Based on Software-Defined Networking Control Plane

Loading-Completion messages from other nodes along the path. A control and scheduling
procedure without an acknowledgement mechanism is proposed [5], in which the nodes along
the calculated routing path need not send the completion messages to the controller. The
mechanisms discussed above lead to low network resource utilization, especially, the one
proposed by Patel et al. which will result in burst loss if any related node does not process its
flow entries on a timely basis.

If the number of Packet-In messages per unit time can be decreased while the number of
bursts processed is unchanged, the required bandwidth between the nodes and the controller,
and the average latency of the controller to process a message will be reduced. In [4, 5], the
sending of one Packet-In message to the controller corresponds to one burst, meaning that the
number of Packet-In messages is equal to the number of bursts. Based on the one-to-one
corresponding mechanism (OTOCM), the controller has to process a large number of
Packet-In messages and consume amounts of time in reading the arrival OpenFlow messages
and communicating with OBS nodes. All of these hinder improvement in controller
performance. Therefore, in this work, we propose a scheduling mechanism named BFSM to
address the issue.

3. BFSM Base on SDN
In this section, we describe the key features of BFSM, and present the processing sequence of
BFSM in SDN-based OBS networks.

3.1 Key Features Involved in BFSM
The key features of BFSM include the mechanism of assembling the burst-flow, the extension
of the flow table structure, and the modified network applications in the SDN controller.

(1) Assembling the burst-flow mechanism

The control granularity of resource reservation in BFSM is the burst-flow, while the
transmission granularity of BFSM is still the burst. The bursts with the same destination are
considered to belong to the same burst-flow. In assembling the burst-flow, each SDN-based
OBS node has one burst-flow buffer used to store the same-destination bursts and record the
time of the burst aggregation. When the burst-flow buffer is filled by the same destination
bursts, or the assembling time (i.e., the time for burst aggregation) reaches the threshold value,
all of the bursts are assembled into a burst-flow. After launching the burst-flow, another
burst-flow will be assembled in the burst-flow buffer.

(2) Extended structure of the flow table

In this work, we modify the construction of the flow table defined in OpenFlow
specification 1.0.0 to meet the burst-flow scheduling requirements in BFSM. A flow table
consists of several flow entries, and the main components of the improved flow entry in a flow
table are illustrated in Fig. 1.

Match Fields Counters Instructions Flow Information

Fig. 1. Main components of a flow entry in the extended flow table

The Flow Information field is the extended part of a flow entry, and it contains some
information of a burst-flow, such as the number of total bursts, the number of bursts that have

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016 5

reserved resources successfully, and the packet identities (IDs) of the bursts. Because there is
insufficient resource for all bursts in a burst-flow when the offered load is high, the stored flow
information will make the controller handle the burst-flow effectively. According to the
information, the bursts in a burst-flow can be handled accurately, and the flow table will be
updated in time as long as the last burst has been processed.

(3) Network applications

In [3], the SDON architecture (shown in Fig. 2) and the corresponding controller
technologies are presented. Various functionalities of the control plane are installed as
network applications in the controller, including Topology Storage, Routing, Resource
Allocation, Access Control, etc. The controller stores the topological information in the
Topology Storage component after receiving the features replied from each node. Routing is
responsible for routing the burst-flows and stores the route table. Resource Allocation runs the
resource scheduling algorithm to schedule burst-flows and allocate them channel resource, in
order to achieve high resource utilization and avoid the high burst loss rate. Finally, Access
Control manages the OpenFlow messages and takes charge of the communication with
OpenFlow-enabled switches.

In our work, as shown in Fig. 3, we add Burst Buffer Management (BBM) in the Network
Applications layer. It is one of the most important parts of BFSM and is used to manage the

Operating System

Network Applications

Debugger & Manager

Network Controller

Network Hypervisor

Physical Hardware

Variable
Transponder

Flexible
ROADM

…

Fig. 2. SDON architecture [3]

Access
Control

Burst Buffer
Management

Topology
Storage Routing

Resource
Allocation

Network Applications

Fig. 3. Network applications in the controller

6 Wan Tang et al.: Flow Scheduling in OBS Networks Based on Software-Defined Networking Control Plane

burst-flow buffers in the source OBS nodes. The source node sends out status messages to the
BBM, containing the information of the burst and the burst-flow buffer. Meanwhile, BBM
sends control messages to the source node for specifying the size of a burst-flow, setting the
time threshold for buffering bursts, obtaining the remainder space in the burst-flow buffer, and
so on.

3.2 Signaling and Processing Sequences
A UCP of the OBS network should meet the requirements of BCP switching and resource
reservation. In the SDN-based OBS networks applying OpenFlow, a central controller
processes the routing and resource scheduling, and then inserts appropriate flow entries into all
OBS nodes on the selected routing path. Each OBS node should configure the flow table.

In traditional OpenFlow-based networks, if an arrival packet matches with the existing flow
entries of the flow table in the OpenFlow switch, the corresponding action of the matching
flow entry will be performed. However, if there is no matching flow entry, the switch will send
the packet to the central controller for further processing. However, the switching granularity
is the optical burst which is aggregated by packets with the same destination, and the bursts
propagate in wavelength channels without any Optical/ Electronic (O/E) translation. The
signaling procedures of the OTOCM increase the number of messages for the controller to
respond to, the average latency of the controller to process each message, and the bandwidth
occupancy of the control channels between the controller and the switches.

An OpenFlow-enabled OBS node is component of two parts: edge-node and core-node,
which undertake different jobs. An edge-node assembles IP packets into bursts, sends the
Packet-In message to the controller, and sends the BCP onto the control channel after being
inserted with a burst-flow entry. The core node may have multiple physical ports of control
channels and corresponding switching fabric ports for data channels [4].

Source OBS
Edge-Node

 Source OBS
 Core-Node

Other OBS
Nodes

SDN
Controller

① Packet In Msg.

② Flow Mod Msg.

② Flow Mod Msg.

③ Loading
Completion Msg.

④ Flow Mod Msg.

Fig. 4. Signaling procedures of BFSM between the controller and the OBS nodes

To solve the problems raised by the OTOCM mechanism, in the proposed BFSM, only one
Packet-In message containing the information of a burst-flow is sent to the controller for

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016 7

resource reservation. Fig. 4 describes the detailed signaling procedures of the BFSM between
the controller and the OpenFlow-enabled OBS nodes.

The signaling procedures applied in the SDN-based OBS network presented in Fig. 4
correspond to the Steps 1 to 4 depicted in Fig. 5. Comparing to the OTOCM proposed in [4, 5],
in BFSM, a Packet-In message contains the information of a burst-flow instead of one burst,
and the controller can process more bursts while responding one Packet-In message.

Source
Edge

Destination
Edge

Source
Core

Destination
Core

SDN controller

OBS node

Burst-flow buffer

Control channel

Data channel

IP flow
Communication with
controller

BCP transfer

Burst-flow
transfer

…
…

Fig. 5. Processing sequences of BFSM in the SDN-based OBS networks

The BFSM in the SDN-based OBS network works as follows.

Step 0: Generate a burst-flow

The source OBS edge-node aggregates packets belonging to a flow with the same
destination into bursts and creates their corresponding BCPs. Then, the same-destination
bursts are stored in the burst-flow buffer. When the burst-flow buffer is full, or all bursts of a
flow have been assembled in the buffer, the bursts in the buffer will comprise a burst-flow.

Step 1: Send a Packet-In message

The source edge-node encapsulates the BCP of the first burst in a Packet-In message and
sends it to the controller to request an end-to-end optical path for the burst-flow. This BCP
contains the burst-flow information, including the number of bursts, burst size, etc.

Step 2: Insert flow entries into the OBS nodes except the source

The controller allocates resource and calculates an end-to-end optical virtual path for the
burst-flow. The corresponding flow entries are encapsulated in a Flow-Mod message which is
sent by the controller to add, delete or modify the entities of the flow table in the switch. The
Flow Information field stores the resource reservation information (including the number of
bursts, the number of bursts that have reserved wavelength successfully, etc.) of each burst in
the burst-flow. The Flow-Mod message is sent to all OBS nodes along the selected path except
the source edge-node.

Step 3: Send a Loading-Completion message

The OBS node informs the controller with a Load-Completion message to confirm that a
new burst-flow entry is loaded. The source core-node of the optical virtual path sends a
Loading-Completion message to the controller when the flow entry is loaded into it. In order to

8 Wan Tang et al.: Flow Scheduling in OBS Networks Based on Software-Defined Networking Control Plane

decrease the number of messages to which the controller responds, only the source core-node
takes this step.

Step 4: Insert the flow entry into the source

Receiving the Loading-Completion message, the controller encapsulates BCP and flow
entry in a Flow-Mod message, and sends the message to the source edge-node.

Step 5: Send BCPs of the burst-flow

The source edge-node updates its flow table and extracts the BCP of the first burst from the
Flow-Mod message. After sending the extracted BCP on the control channel, the source node
injects other BCPs of the burst-flow into the control channel in order. All BCPs are transported
along the selected path, and the Packet IDs of their corresponding bursts are stored in each
node on arrival in advance. If the resource reservation for a burst fails, its corresponding BCP
would be discarded.

Step 6: Send bursts in the burst-flow

Once the BCP of a burst has set off, the corresponding burst is released to the data channel
by the source edge-node after the offset time, and reaches the destination node transparently.
Only the bursts having reserved successfully can enter into the data channel, and the other
bursts are dropped at the source edge-node.

Step 7: Disassemble bursts and delete the corresponding flow entries

The destination edge-node disassembles bursts into packets, and all nodes along the selected
path delete the corresponding flow entries.

4. Reservation with More Usage Algorithm
In this section, the reservation with more channel usage (RMCU) algorithm is presented, and
some examples are given to illustrate the operation process of the RMCU. In the controller,
RMCU is loaded in Resource Allocation to schedule burst-flows and allocate channel resource
to them.

4.1 Algorithm Description

The RMCU aims to reserve more bursts of a burst-flow in one channel in order to make full
use of channel resource and avoid high burst loss rate. In the flow table of an OBS node, a
one-to-one relationship exists between the flow and its entry with one output port, and all
bursts of a burst-flow transmit through the same data channel without any optical buffer.
Therefore, the arrival time of each burst is predictable. The RMCU firstly contrasts the
available channel resource during the time between the first burst and the last arriving burst.
Then, the channel having the most vacant resource for the burst-flow will be selected. When
the controller makes reservations on the last link, it applies the RMCU algorithm to modify the
previous link reservation information. The old information is inconsistent with the latest
information of the link reservation. That is to say, if the last link and its previous one are both
reserved successfully, the resource reserved by the bursts in the previous link would be
released, and the corresponding reservation information is modified to be Failure.

In Table 1, the notations for describing the RMCU are given. The leisure horizon is the last
time for the channel to be scheduled for the burst-flow. Because of the interval time between
bursts in a burst-flow, the channel resource has not been reserved completely, which generates

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016 9

some gaps between burst reservations. The RMCU regards the resource within the gaps as
available leisure resource elements and stores them in the gap lists for new reservations.

Table 1. Notation list
Notation Description Notation Description

C set of channels in a link Li gap list of the i-th channel
Ci the i-th channel in a link ti the leisure horizon of the i-th channel
ts beginning of reservation time te end of reservation time
B reservation information in current

link
B’ reservation information in previous

link
N the number of bursts in a

burst-flow
ni the number of available leisure

resource elements in the gap list of the
i-th channel

Next, we describe how the RMCU works to reserve the wavelength bandwidth on the i-th

link of a routing path of a burst-flow.

Algorithm: RMCU

Step 1: Calculate Ci available resource, and select the appropriate channel for transporting

If (the leisure horizon ti precedes the burst-flow arrival time ts)
 Select the channel with the minimum gap between ti and ts.

Else
 Calculate ni in the Li between ts and te, and select the channel with maximum ni.

Step 2: Reserve resource for the bursts in the burst-flow
If (the resource storing in Li is unused)

Reserve N bursts in the burst-flow, and update B and ti.
Store the available gaps in the Li.

Else
Access Li to find the available resource element for each burst in the burst-
flow.
If (there is available resource)

 Reserve bursts, and update B.
If (the leisure horizon ti precedes the subsequent burst arrival time)

Reserve all subsequent bursts in the burst-flow, and update B and ti.
Store the available gaps in Li.

Step 3: If (the last link is to make reservations)
Modify B’ which is inconsistent with B, and release the corresponding reservation
resource.

The RMCU can reuse the wavelength bandwidth for transmitting bursts as much as possible,
and sometimes reallocate the resources to other burst-flows. The channels with more available
resource will be reused preferentially. If the channel leisure horizon precedes the arrival time
of any burst of the other burst-flows, the RMCU can successfully reserve bandwidth for the
subsequent bursts.

10 Wan Tang et al.: Flow Scheduling in OBS Networks Based on Software-Defined Networking Control Plane

4.2 Illustration Examples
In the BFSM-based OBS networks applying the RMCU algorithm, the channels selected for
transporting burst-flows have the minimum gap between ts and the channel leisure horizon, or
have the most available resource in the gap list. Meanwhile, the RMCU stores the available
gaps between burst reservations in the gap list for the next allocation, and makes new
reservations within them. Therefore, the RMCU can reduce the waste of channel resource and
allocate more resource for burst-flows, which improve the resource utilization and reduce the
burst loss rate.

We use some examples to illustrate the operation of the proposed RMCU. Assume a link has
three channels that have different channel leisure horizons, i.e., t1, t2 and t3, respectively. gi is
the gap between ti and ts.

For example, in Fig. 6(a), three channel leisure horizons are less than the burst-flow arrival
time ts, and g3, the gap between the third channel leisure horizon t3 and ts, is the smallest.
Therefore, the third channel C3 is selected for transmitting the burst-flow. However, when
only one channel leisure horizon is less than ts, the channel is the only choice for the burst-flow
(shown in Fig. 6(b)). Meanwhile, a new reservation can be made within the gap g3, and RMCU
stores it in the gap list.

C1

C2

C3

t1

ts

g1

g2

g3

Resource after channel
leisure horizon

Time

t2

t3

C1

C2

C3

ts

g3

Resource after channel
leisure horizon

Time

t1

t2

t3

(a) Three channel leisure horizons before ts (b) One channel leisure horizon before ts

Fig. 6. The channel leisure horizons before the burst-flow arrival time ts

In Fig. 7, for a burst-flow, ts is less than the three channel leisure horizons, which results in
making use of the leisure resource element stored in the gap lists. As shown in Fig. 7(a), for
the time period between ts and te, the channel resource was reserved. Then, the RMCU chooses
the first channel C1 which has maximum leisure resource elements (n1=33) in the gap list
between ts and te for a burst-flow. If the channel leisure horizon t1 is less than te (Fig. 7(b)), the
third channel C3 having the maximum leisure resource elements (n3=30) will be selected for
the burst-flow.

5. Simulation and Evaluation

In this section, the performance of the proposed RMCU is compared with the classical OBS
and OTOCM via simulation in terms of burst loss rate, the number of Packet-In messages that
a controller responds to per second, and the average latency of the controller to process a
message. The latter two are main performance indexes of the SDN controller [18].

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016 11

C1

C2

C3

ts

n1 = 33

n2 = 16

n3 = 21

te

…

…

…

Leisure resource for
reallocation

Resource after channel
leisure horizon

Time

t1

t2

t3

C1

C2

C3

ts

n1 = 27

n2 = 16

n3 = 30

te

…

…

…

Leisure resource for
reallocation

Resource after channel
leisure horizon

Time

t1

t2

t3

(a) Three channel leisure horizons after te (b) Two channel leisure horizons after te

Fig. 7. The channel leisure horizons after the burst-flow arrival time ts

5.1 Simulation Setting
The simulation platform is a six-node ring SDN-based OBS network with one controller, and
the simulation was run on a 64-bit Windows operating system containing eight physical cores
from Intel Xeon(R) E5-2620 processors, and 7.64 GB RAM. The parameter settings of the
simulation [24] are listed in Table 2.

Table 2. Simulation Setting
Parameter Value

burst size 1 Mbit
transmission rate of data channel 8.6 × 109 bps
data channel propagation delay 5 × 10-5 s

propagation delay of data channel
1.3 × 109 bps transmission rate of control channel

control channel propagation delay
4.35 × 10-5 s transmission rate between controller and OBS node

offset time 1 × 10-6 s
the number of generated bursts 5 × 104

The numbers of busts in a burst-flow (i.e. the size of a burst-flow) are different in the three

simulation scenarios. Once the number of bursts in the burst-flow buffer reaches the set
burst-flow size, those bursts will be assembled together into a burst-flow. Each scenario ran
ten times with different seeds. The simulation results given later are the average values of the
ten simulation runs.

Cbench [25] is the standard tool for evaluating OpenFlow controller performances by
emulating OpenFlow-enabled switches [18, 19, 20, 23]. Cbench generates Packet-In messages
and sends them to the controller to measure the main performance indexes of the SDN
controllers [18, 19, 20] including the number of Packet-In messages that a controller responds
to per second, and the average latency of the controller to process a message. Therefore, in our
work, the two main performance indexes are used for performance evaluation. In future, 5G
scenario [26] will be considered for further enhanced user’s quality of experience (QoE) [27].

12 Wan Tang et al.: Flow Scheduling in OBS Networks Based on Software-Defined Networking Control Plane

5.2 Simulation Results and Analysis
Before describing the simulation scenarios, some constraints in the simulation are set:

• The controller should respond to each received Packet-In message;
• No collision and interference happens during burst propagation;
• Each OBS node can be both source and destination;
• Sending and receiving burst-flows in each OBS node are independent;
• There is no optical buffer and O/E conversion during the burst propagation.

(1) Scenario 1: comparison with the classical OBS

In the classical OBS networks, the burst scheduler makes a reservation for every burst. In
order to make sure that the controller in the BFSM-based case makes a reservation for each
burst, the size of the burst-flow buffer is equal to the size of one burst in this scenario.

Fig. 8 plots the burst loss rates between the BFSM-based OBS and classical OBS networks.
In the simulation, the resource scheduling algorithm used in both cases was First-Fit (FF), a
classical scheduling scheme of OBS networks. Their burst loss rates are almost the same when
the offered load is low (between 0.1 and 0.3). However, if the offered load is higher than 0.3,
the burst loss rate of the BFSM-based case is better than that of the classical OBS due to the
central control of the SDN. It is worth noting that the advantage of the BFSM-based OBS is
increased as the offered load increases. This proves that the SDN architecture provides
network-wide scheduling ability and can avoid channel congestion better than the non-SDN
case. Meanwhile, in the BFSM case, a burst should be discarded at the source node if its
required resource cannot be reserved successfully at any node on its path, and the treatment
can improve the channel resource utilization.

0

5

10

15

20

25

30

35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ur

st
 L

os
s

R
at

e
(%

)

Offered Load

Classical OBS
BFSM-based OBS

Fig. 8. Burst loss rates of two SDN-based and non-SDN OBS networks

Because there is no optical buffer and O/E conversion, the nodal processing delay in the
intermediate node can be ignored. In the BFSM-based OBS, the average hop count and
average end-to-end delay are 1.765 and 3.037 × 10-4 s, respectively. The numerical results
indicate that the average end-to-end delay is almost equal to the product of the average hop
multiplied by the delay of one hop (=1.72 × 10-4 s), and the BFSM hardly increases the
end-to-end delay for bursts.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016 13

(2) Scenario 2: comparison with the OTOCM-based OBS

For Packet-In messages, the throughput is calculated by the number of Packet-In messages
that a controller responds to per second, and the average latency is calculated by the round-trip
time (RTT) from the source OBS edge-node to the controller. The size of the burst-flow in the
BFSM case is, with uniform probability, between 20 and 40.

In the OTOCM-based OBS, the source node sends a Packet-In message to the controller
after assembling one burst, and the control granularity of the resource reservation is the burst.
However, in the BFSM-based OBS, the control granularity of the resource reservation is the
burst-flow. FF is also the resource scheduling algorithm applied in the BFSM-based and
OTOCM-based OBS cases in this scenario.

Table 3 shows that the maximum number of Packet-In messages in the BFSM-based OBS
is three orders of magnitude less than that of the OTOCM.

Table 3. Maximum number of Packet-In messages (offered load = 1)
Control mechanism Messages per second
OTOCM-based OBS 142931
BFSM-based OBS 4730

The response latencies are shown in Table 4. The BFSM-based OBS has the minimum

response latency at 189.2 μs, and that of the OTOCM-based OBS is at 190 μs, because the
BFSM-based OBS sends fewer Packet-In messages to the controller per second. That is, the
fewer Packet-In messages that are processed, the lower the process time cost for the controller.
Meanwhile, if the number of Packet-In messages is smaller, the bandwidth demand to the
controller is lower.

Table 4. Response latency
Control mechanism Minimum response latency Average response latency
OTOCM-based OBS 189.995 μs 191.476 μs
BFSM-based OBS 189.268 μs 190.055 μs

In the BFSM-based OBS, the average number of bursts in a burst-flow is 30. As shown in

Table 4, we can calculate that the average response latency of a burst, that is the average
processing latency of the BFSM-based OBS, is 6.322 μs, about 30 times less than that of the
OTOCM-based OBS (=190 μs).

Therefore, the BFSM-based OBS sends fewer Packet-In messages to the controller for
processing and has lower average latency not only for one Packet-In message but also for one
burst. In addition, the required bandwidth to the controller is decreased in the BFSM-based
OBS. Compared with the OTOCM-based OBS network, the BFSM-based OBS network
generates fewer Packet-In messages per second to which a controller responds, and the
average latency of the controller to process each message is less, while the traffic between the
nodes and the controller is less too.

(3) Scenario 3: impact of the burst-flow size

In this scenario, we consider the impact of the burst-flow size in the BFSM applying the
RMCU. The number of bursts in each burst-flow is set to be 10 (the small size), 50 (the median
size) or 500 (the large size), respectively.

14 Wan Tang et al.: Flow Scheduling in OBS Networks Based on Software-Defined Networking Control Plane

Fig. 9 shows the contrasted burst loss rates of different sized burst-flows. A burst-flow with
the larger size has the lower burst loss rate. When the offered load is higher than 0.6, more
bursts in the small size burst-flow are discarded. We can see from Fig. 9 that the larger the
burst-flow size is, the fewer the number of bursts in the BFSM-based OBS networks are
discarded. This means that the larger sized case can provide better burst transport service.
Meanwhile, the larger sized burst-flow results in a smaller number of burst-flows, and fewer
Packet-In messages generated by the source OBS node, which decreases the workload of the
controller. That is to say, the time cost of the controller to process the messages received from
the OBS nodes and the required bandwidth between the nodes and the controller will decrease.

0

5

10

15

20

25

30

35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ur

st
 L

os
s

 R
at

e
(%

)

Offered Load

10-burst size
50-burst size
500-burst size

Fig. 9. Burst loss rates for different burst-flow sizes

6. Conclusion
To address the issue of the underutilization of network resource in SDN-based OBS networks,
we presented a burst-flow scheduling mechanism BFSM in this paper. Our main contributions
are: 1) extending the structure of the flow table, 2) adding a BBM application in the central
controller, 3) giving the process and signaling procedure of the burst-flow, and 4) proposing a
resource scheduling algorithm taking into account channel usage. The simulation results show
that the proposed mechanism can provide good controller performance for the SDN-based
network. In addition, when the burst-flow size is larger, more bursts can reach their
destinations, and resource utilization is higher. Due to adding the burst-flow buffer in the
source edge-node, extending the flow table, and increasing the burst-flow assembling time, the
space and time consumption will increase to some extent. Therefore, how to define the sizes of
burst-flow buffer and the flow information is our next work. Overall, BFSM offers optimal
controller performance and a good solution of UCP for OBS networks.

References
[1] X. Ge, H. Cheng, M. Guizani, and T. Han, “5G wireless backhaul networks: challenges and

research advances,” IEEE Network, vol. 28, no. 6, pp. 6-11, Nov. 2014. Article (CrossRef Link)
[2] T. Coutelen, H. Elbiaze, and B. Jaumard, “Performance comparison of OCS and OBS switching

http://dx.doi.org/doi:10.1109/MNET.2014.6963798

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016 15

paradigms,” in Proc. of 7th International Conference on Transparent Optical Networks, vol. 1, pp.
212-215, Jul. 3-7, 2005. Article (CrossRef Link)

[3] C. Qiao and M. Yoo, “Optical burst switching (OBS) – a new paradigm for an optical Internet,”
Journal of High Speed Networks, vol. 8, no. 1, pp. 69-84, 1999. Article (CrossRef Link)

[4] D. Zhang, L. Liu, L. Hong, H. Gou, T. Tsuritani, J. Wu, and I. Morita, “Experimental
demonstration of OBS/WSON multi-Layer optical switched networks with an OpenFlow-based
unified control plane,” in Proc. of 16th Optical Networks Design and Modelling (ONDM), pp. 1-6,
Colchester, United Kingdom, Apr. 17-20, 2012. Article (CrossRef Link)

[5] A. N. Patel, P. N. Ji, and T. Wang, “QoS-aware optical burst switching in OpenFlow based
software-defined optical networks,” in Proc. of 17th Optical Network Design and Modeling
(ONDM), pp. 275-280, Brest, France, Apr. 16-19, 2013. Article (CrossRef Link)

[6] X. Ge, B. Yang, J. Ye, G. Mao, C.-X. Wang, and T. Han, “Spatial spectrum and energy efficiency of
random cellular networks,” IEEE Transactions on Communications, vol. 63, no. 3, pp. 1019 - 1030,
Mar. 2015. Article (CrossRef Link)

[7] H. Guo, Y. Yin, T. Tsuritani, P. Huang, G. Zheng, J. Wu, T. Otani, M. Suzuki, and J. Lin,
“Experimental demonstration of interworking GMPLS with OBS networks,” in Proc. of European
Conf. on Optical Communications (ECOC), Sep. 16-20, pp. 1-2, Berlin, Germany, 2007.
Article (CrossRef Link)

[8] L. Liu, D. Zhang, T. Tsuritani, R. Vilalta, R. Casellas, L. Hong, I. Morita, H. Guo, J. Wu, R.
Martínez, and R. Muñoz, “Field trial of an OpenFlow-based unified control plane for multilayer
multigranularity optical switching networks,” Lightwave Technology, vol. 31, no. 4, pp. 506-514,
Feb. 2013. Article (CrossRef Link)

[9] R. Martinez, R. Casellas, and R. Muñoz, “Experimental validation/evaluation of a GMPLS unified
control plane in multi-layer (MPLS-TP/WSON) networks,” in Proc. of Optical Fiber
Communication Conf. and Exposition (OFC/NFOEC), pp. 1-3, Los Angeles, USA, Mar. 4-8, 2012.
Article (CrossRef Link)

[10] H. Farhady, H. Y. Lee, and A. Nakao, “Software-defined networking: A survey,” Computer
Networks, vol. 81, pp. 79-95, Apr. 2015. Article (CrossRef Link)

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner, “OpenFlow: Enabling innovation in campus networks,” ACM SIGCOMM Computer
Communication Review, vol. 38, no. 2, pp. 69-74, Apr. 2008. Article (CrossRef Link)

[12] D. King, A. Farrel, and N. Georgalas, "The role of SDN and NFV for flexible optical networks:
Current status, challenges and opportunities," in Proc. of 17th Int. Conf. on Transparent Optical
Networks (ICTON), pp.1-6, Budapest, Hungary, Jul. 5-9, 2015. Article (CrossRef Link)

[13] D. King and A. Farrel, “A PCE-based architecture for application-based network operations,”
IETF RFC 7491, Mar. 2015. Article (CrossRef Link)

[14] A. Aguado, V. López, J. Marhuenda, ó. Dios, and J. Fernández-Palacios, "ABNO: a feasible SDN
approach for multivendor IP and optical networks," Journal of Optical Communications and
Networking, vol. 7, no. 2, pp. A356-A362, Feb. 2015. Article (CrossRef Link)

[15] ONF, “OpenFlow Switch Specification Version 1.0.0,” Dec. 2009. Article (CrossRef Link)
[16] L. Liu, T. Tsuritani, I. Morita, H. Guo, and J. Wu, “OpenFlow-based wavelength path control in

transparent optical networks: A proof-of-concept demonstration,” in Proc. of 37th European Conf.
on Optical Communications (ECOC), Geneva, Switzerland, Sep. 18-22, 2011.
Article (CrossRef Link)

[17] L. Liu, T. Tsuritani, I. Morita, H. Guo, and J. Wu, “Experimental validation and performance
evaluation of OpenFlow-based wavelength path control in transparent optical networks,” Optics
Express, vol. 19, no. 27, pp. 26578-26593, Dec. 2011. Article (CrossRef Link)

[18] D. Erickson, “The Beacon OpenFlow controller,” in Proc. of ACM SIGCOMM workshop on Hot
Topics in Software Defined Networking (HOT SDN), pp. 13-18, Hong Kong, China, Aug. 18, 2013.
Article (CrossRef Link)

[19] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood, “On controller
performance in software-defined networks,” in Proc. of the 2nd USENIX conf. on Hot Topics in
Management of Internet, Cloud, and Enterprise Networks and Services (Hot-ICE), San Jose, USA,

http://dx.doi.org/doi:10.1109/ICTON.2005.1505788
http://dx.doi.org/doi:10.1.1.10.8754
http://dx.doi.org/doi:10.1109/ONDM.2012.6210264
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6524893
http://dx.doi.org/doi:10.1109/TCOMM.2015.2394386
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5758175
http://dx.doi.org/doi:10.1109/JLT.2012.2212179
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6476345
http://dx.doi.org/doi:10.1016/j.comnet.2015.02.014
http://doi.acm.org/10.1145/1355734.1355746
http://www.olddog.co.uk/Paper-TheRoleOfSDN-NFVinFlexibleOpticalNetworks.pdf
http://www.ietf.org/mail-archive/web/ietf-announce/current/msg13927.html
http://dx.doi.org/DOI:10.1364/JOCN.7.00A356
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6065999
http://dx.doi.org/doi:10.1364/OE.19.026578
http://dx.doi.org/doi:10.1145/2491185.2491189

16 Wan Tang et al.: Flow Scheduling in OBS Networks Based on Software-Defined Networking Control Plane

Apr. 24, 2012. Article (CrossRef Link)
[20] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky, “Advance study of

SDN/OpenFlow controllers,” in Proc. of the 9th Central & Eastern European Software
Engineering Conf. in Russia (CEE-SECR), Moscow, Russia, October, 2013.
Article (CrossRef Link)

[21] A. Shalimov and R. Smeliansky, “On bringing software engineering to computer networks with
software defined networking,” in Proc. of Spring/Summer Young Researchers’ Colloqium on
Software Engineering (SYRCoSE), pp. 17-22, Kazan. Russia, May 2013. Article (CrossRef Link)

[22] P. Ivashchenko, A. Shalimov, and R. Smeliansky, “High performance in-kernel SDN/OpenFlow
controller,” in Proc. of Open Networking Summit Research Track, USENIX, Santa Clara, USA,
March, 2014. Article (CrossRef Link)

[23] D. Turull, M. Hidell, and P. Sjodin, “Performance evaluation of OpenFlow controllers for network
virtualization,” in Proc. of 14th High Performance Switching and Routing (HPSR), pp.50-56,
Vancouver, Canada, Jul. 1-4, 2014. Article (CrossRef Link)

[24] X. Ge, G. Zhu, and Y. Zhu, “On the testing for alpha-stable distributions of network traffic,”
Computer Communications, vol.27, no.5, pp.447-457, Mar. 2004. Article (CrossRef Link)

[25] Cbench, “Cbench Controller Benchmarker," [cited 2015 June 9]. Article (CrossRef Link)
[26] K. Zheng, L. Zhao, J. Mei, M. Dohler, W. Xiang, and Y. Peng, “10 Gb/s HetSNets with

millimeter-wave communications: access and networking-challenges and protocols,” IEEE
Communications Magazine, vol. 53, no.1, pp. 222-231, Jan. 2015. Article (CrossRef Link)

[27] K. Zheng, X. Zhang, Q. Zheng, W. Xiang, and L. Hanzo, “Quality-of-experience assessment and
its application to video services in LTE networks,” IEEE Wireless Communications, vol. 22, no.1,
pp. 70-78, Feb. 2015. Article (CrossRef Link)

Wan Tang received the B.S. and M.S. degrees in Computer Application Technology
from South Central University for Nationalities, Wuhan, China, in 1995 and 2001,
respectively, and received a Ph.D. degree in Communication and Information Systems
from Wuhan University, China, in 2009. She is currently an associate professor in the
College of Computer Science of South-Central University for Nationalities. From 2001 to
2002, she worked as a visiting scholar at the Department of Computer Engineering,
Chonbuk National University, South Korea. Furthermore, from 2012 to 2013, she worked
as a visiting scholar at the Department of Computer Science and Engineering, SUNY at
Buffalo, USA. Her research interests include protocols for optical/wireless networks,
software defined networking, network security, etc.

Fan Chen is an M.S. student at the College of Computer Science, South-Central
University for Nationalities. He received a B.S. degree in the Department of Computer
Science from Donghu College, Wuhan University in 2013. His research interests lie in
optical switching technologies, software-defined networking, data center networks, etc.

https://www.usenix.org/system/files/conference/hot-ice12/hotice12-final33_0.pdf
http://dl.acm.org/citation.cfm?doid=2556610.2556621
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.474.5050
http://www.researchgate.net/publication/259870659_High_performance_in-kernel_SDNOpenFlow_controller
http://dx.doi.org/doi:10.1109/HPSR.2014.6900881
http://dx.doi.org/doi:10.1016/j.comcom.2003.10.004
http://archive.openflow.org/wk/index.php/Oflops
http://dx.doi.org/doi:10.1109/MCOM.2015.7010538
http://dx.doi.org/doi:10.1109/MWC.2015.7054721

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016 17

Min Chen is a professor in School of Computer Science and Technology at Huazhong
University of Science and Technology (HUST). He is Chair of IEEE Computer Society
(CS) Special Technical Communities (STC) on Big Data. He was an assistant professor in
School of Computer Science and Engineering at Seoul National University (SNU) from
Sep. 2009 to Feb. 2012. He was R&D director at Confederal Network Inc. for half a year.
He worked as a Post-Doctoral Fellow in Department of Electrical and Computer
Engineering at University of British Columbia (UBC) for three years. Before joining
UBC, he was a Post-Doctoral Fellow at SNU for one and half years. He received Best
Paper Award from IEEE ICC 2012, and Best Paper Runner-up Award from QShine 2008.
He serves as editor or associate editor forInformation Sciences, Wireless
Communications and Mobile Computing, IET Communications, IET Networks, Wiley I.
J. of Security and Communication Networks, Journal of Internet Technology, KSII Trans.
Internet and Information Systems, International Journal of Sensor Networks. He is
managing editor for IJAACS and IJART. He is a Guest Editor for IEEE Network, IEEE
Wireless Communications Magazine, etc. He is Co-Chair of IEEE ICC
2012-Communications Theory Symposium, and Co-Chair of IEEE ICC 2013-Wireless
Networks Symposium. He is General Co-Chair for the 12th IEEE International
Conference on Computer and Information Technology (IEEE CIT-2012) and Mobimedia
2015. He is General Vice Chair foTridentcom 2014. He is Keynote Speaker for CyberC
2012, Mobiquitous 2012 and Cloudcomp 2015. He is a TPC member for IEEE
INFOCOM 2014. He has more than 260 paper publications, including 100+ SCI papers,
50+ IEEE Trans./Journal papers, 6 ISI highly cited papers and 1 hot paper. He has
published a book on IoT: OPNET IoT Simulation (2015) with HUST Presss, and a book
on big data: Big Data Related Technologies (2014) with Springer Series in Computer
Science. His Google Scholars Citations reached 5,200+ with an h-index of 34. His top
paper was cited 640 times, while his top book was cited 420 times as of Aug 2015. He is
an IEEE Senior Member since 2009. His research focuses on Internet of Things, Mobile
Cloud, Body Area Networks, Emotion-aware Computing, Healthcare Big Data, Cyber
Physical Systems, and Robotics, etc.

Guo Liu is an M.S. student at the College of Computer Science, South-Central
University for Nationalities. He received a B.S. degree in the College of Computer
Science from South-Central University for Nationalities in 2013. His research interests lie
in software-defined networking, traffic engineering in data center networks, etc.

