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Abstract 
 

The separated management and operation of commercial IP/optical multilayer networks 
makes network operators look for a unified control plane (UCP) to reduce their capital and 
operational expenditure. Software-defined networking (SDN) provides a central control plane 
with a programmable mechanism, regarded as a promising UCP for future optical networks. 
The general control and scheduling mechanism in SDN-based optical burst switching (OBS) 
networks is insufficient so the controller has to process a large number of messages per second, 
resulting in low network resource utilization. In view of this, this paper presents the burst-flow 
scheduling mechanism (BFSM) with a proposed scheduling algorithm considering channel 
usage. The simulation results show that, compared with the general control and scheduling 
mechanism, BFSM provides higher resource utilization and controller performance for the 
SDN-based OBS network in terms of burst loss rate, the number of messages to which the 
controller responds, and the average latency of the controller to process a message. 
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1. Introduction 

Optical fibers are ideal transfer media for the growing traffic demands in metro and 
long-haul networks, providing vast capacity and offering steady long-reach transmission [1]. 
As the most mature optical switching technology, optical circuit switching (OCS) can provide 
guaranteed quality of service (QoS), but the wavelength utilization is inadequate [2]. Being the 
ideal optical switching, optical packet switching (OPS) can achieve high utilization; however, 
the immature optical processing technologies make it impractical. Fortunately, optical burst 
switching (OBS) [3] is proposed as a compromise between OCS and OPS, taking advantage of 
optical network performances and using the burst control packet (BCP) for advance 
reservations. Therefore, OBS is regarded as a more promising optical switching technology.  

However, nowadays, commercial IP/optical multilayer networks are managed and operated 
separately, leading to inefficient network operation, resource waste, and high capital and 
operational expenditure [4, 5]. In order to solve those problems, network operators need to 
seek a unified control plane (UCP) that combines the management and operation of multiple 
layers [6]. A distributed control plane, called generalized multi-protocol label switching 
(GMPLS), is proposed to address the separate management in IP/optical multilayer networks, 
but it is overcomplicated. The GMPLS-based UCP proposed in [7] can provide unified 
management for OBS networks and wavelength switched optical networks (WSONs), but the 
information delivery among different nodes is unstable and complex due to the distributed 
nature of the GMPLS protocol [8]. Meanwhile, the experimental validation and evaluation of a 
GMPLS-based UCP is provided to process a multi-protocol label switching transport profile 
(MPLS-TP) in WSON [9]. Nevertheless, the hardware flexibility is insufficient because the 
standardization of GMPLS lags behind its hardware development [8]. Therefore, GMPLS is 
incompetent in offering a promising UCP for the future optical network. 

Software-defined networking (SDN) [10], a novel network architecture proposed in 2009, 
extracts the control plane from the data plane of physical hardware and provides a 
programmable mechanism, operating and managing most parts of the network using the 
central controller(s). Providing high scalability and flexibility for SDN, OpenFlow is the most 
common communication protocol between the control layer and the forwarding layer in SDN 
architecture [11]. In an OpenFlow-based SDN, the flow table, maintained in network devices 
(e.g. OpenFlow-enabled switches), decides the forwarding method of packets and is generated 
and configured by the central controller. Regarded as a promising UCP for future optical 
networks, the OpenFlow-based SDN can operate and manage IP/optical multilayer networks 
with different switching granularities, and provides high capacity and scalability and low 
power consumption for optical transport networks [3,12].  

The distributed control plane (e.g., GMPLS) is overcomplicated and requires high 
performance on each node of the network. Conversely, the central control plane, such as the 
SDN, transfers large amounts of computations from the nodes to the central controller and 
reduces the functional requirement of each node. In addition, central control can improve the 
BCP forwarding rate. A general control and scheduling mechanism for SDN-based OBS 
networks is proposed in [4, 5]. Nevertheless, the source edge-node sends a Packet-In message 
to the central controller after assembling a burst, which means that the central controller only 
processes one burst when responding to a Packet-In message. If the network offered load is 
high, the central controller and each OBS node have to process a large number of messages per 
second, ultimately resulting in low network resource utilization, i.e., needing more bandwidth 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016                                       3 

between the nodes and the controller, and enlarging the average latency for the controller to 
process a message.  

The application-based network operations (ABNO), an architecture published by the 
Internet Engineering Task Force (IETF), provides a way for different network technologies 
and use cases [12, 13]. The performance of the ABNO architecture for multilayer use cases 
with control plane and with OpenFlow in the optical layer was validated by A. Aguado et al. 
The ABNO architecture as a flexible SDN approach provides the support with non-OpenFlow 
networks [14]. 

To address the issue of network resource utilization in the SDN-based OBS, in this paper, 
we propose a burst-flow scheduling mechanism (BFSM) for SDN-based OBS networks. In 
BFSM, the source edge-node buffers a certain number of bursts with the same source and 
destination, and these bursts are composited into a burst-flow. The source edge-node sends 
only one Packet-In message, containing the information of a burst-flow, to the controller to 
process the bursts. Meanwhile, by introducing an extension of flow table structure based on 
OpenFlow specification 1.0.0 [15] and improving the network applications in the controller 
proposed in [3], a resource scheduling algorithm for BFSM is also proposed in our work. 

The rest of this paper is organized as follows. In Section 2, we discuss the problem of the 
general control and scheduling mechanism for SDN-based OBS networks. Section 3 describes 
the BFSM, including the signaling procedure, the extension of the flow table structure in the 
OBS nodes, and the network applications provided by the controller. Section 4 introduces the 
resource scheduling algorithm applying in BFSM. Section 5 evaluates the performance of the 
BFSM via simulation. Finally, a conclusion is drawn in Section 6. 

2. Problem Description 
Compared with electrical transport, optical transport has the advantages of high capacity, low 
power consumption, and long-haul transmission. Not only will the optical network offer a 
central control UCP, but it will also provide a high channel utilization rate and scalability if 
introducing the OpenFlow-based SDN [11]. The OpenFlow-based SDN has been applied to 
optical wavelength networks [16, 17], but the work is still at an early stage and too complex to 
implement. Because prevailing electrical switching technologies cannot be directly applied to 
the optical SDN, Patel et al. presented a software defined optical network (SDON) architecture 
by spliting the control plane from the data plane. In addition, he discussed the key technologies 
of SDON including physical hardware technologies, common interface, and controller 
technologies [5]. 

In an SDN-based network, the controller is the scheduling and management center, and 
plays an extremely important role. The performance of the OpenFlow controller is evaluated 
in terms of the number of messages that a controller responds to per second, and the average 
latency of the controller to process a message [18, 19, 20]. The most time-consuming 
processes of a controller are those of reading the arrival OpenFlow messages from the network 
interface cards (NICs) and communicating with the OpenFlow-enabled switches [21, 22].  

A field trial of an OpenFlow-based UCP for multilayer multigranularity optical switching 
networks was undertaken by Liu et al. to verify and evaluate the end-to-end latency, overall 
feasibility and efficiency of the SDN-based OBS [8]. Zhang et al. introduced a general control 
and scheduling procedure [4]. The source OBS edge-node sends out a Packet-In message to 
the controller after assembling a burst, and the controller computes an end-to-end path for the 
BCP of the burst. The controller inserts flow entries into all nodes along the BCP path except 
the source, and inserts a flow entry into the source edge-node until receiving the 
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Loading-Completion messages from other nodes along the path. A control and scheduling 
procedure without an acknowledgement mechanism is proposed [5], in which the nodes along 
the calculated routing path need not send the completion messages to the controller. The 
mechanisms discussed above lead to low network resource utilization, especially, the one 
proposed by Patel et al. which will result in burst loss if any related node does not process its 
flow entries on a timely basis. 

If the number of Packet-In messages per unit time can be decreased while the number of 
bursts processed is unchanged, the required bandwidth between the nodes and the controller, 
and the average latency of the controller to process a message will be reduced. In [4, 5], the 
sending of one Packet-In message to the controller corresponds to one burst, meaning that the 
number of Packet-In messages is equal to the number of bursts. Based on the one-to-one 
corresponding mechanism (OTOCM), the controller has to process a large number of 
Packet-In messages and consume amounts of time in reading the arrival OpenFlow messages 
and communicating with OBS nodes. All of these hinder improvement in controller 
performance. Therefore, in this work, we propose a scheduling mechanism named BFSM to 
address the issue.  

3. BFSM Base on SDN 
In this section, we describe the key features of BFSM, and present the processing sequence of 
BFSM in SDN-based OBS networks. 

3.1 Key Features Involved in BFSM 
The key features of BFSM include the mechanism of assembling the burst-flow, the extension 
of the flow table structure, and the modified network applications in the SDN controller. 

(1) Assembling the burst-flow mechanism 

The control granularity of resource reservation in BFSM is the burst-flow, while the 
transmission granularity of BFSM is still the burst. The bursts with the same destination are 
considered to belong to the same burst-flow. In assembling the burst-flow, each SDN-based 
OBS node has one burst-flow buffer used to store the same-destination bursts and record the 
time of the burst aggregation. When the burst-flow buffer is filled by the same destination 
bursts, or the assembling time (i.e., the time for burst aggregation) reaches the threshold value, 
all of the bursts are assembled into a burst-flow. After launching the burst-flow, another 
burst-flow will be assembled in the burst-flow buffer. 

(2) Extended structure of the flow table 

In this work, we modify the construction of the flow table defined in OpenFlow 
specification 1.0.0 to meet the burst-flow scheduling requirements in BFSM. A flow table 
consists of several flow entries, and the main components of the improved flow entry in a flow 
table are illustrated in Fig. 1. 
 

Match Fields Counters Instructions Flow Information
 

Fig. 1. Main components of a flow entry in the extended flow table 

The Flow Information field is the extended part of a flow entry, and it contains some 
information of a burst-flow, such as the number of total bursts, the number of bursts that have 
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reserved resources successfully, and the packet identities (IDs) of the bursts. Because there is 
insufficient resource for all bursts in a burst-flow when the offered load is high, the stored flow 
information will make the controller handle the burst-flow effectively. According to the 
information, the bursts in a burst-flow can be handled accurately, and the flow table will be 
updated in time as long as the last burst has been processed. 
 

(3) Network applications 

In [3], the SDON architecture (shown in Fig. 2) and the corresponding controller 
technologies are presented. Various functionalities of the control plane are installed as 
network applications in the controller, including Topology Storage, Routing, Resource 
Allocation, Access Control, etc. The controller stores the topological information in the 
Topology Storage component after receiving the features replied from each node. Routing is 
responsible for routing the burst-flows and stores the route table. Resource Allocation runs the 
resource scheduling algorithm to schedule burst-flows and allocate them channel resource, in 
order to achieve high resource utilization and avoid the high burst loss rate. Finally, Access 
Control manages the OpenFlow messages and takes charge of the communication with 
OpenFlow-enabled switches. 

In our work, as shown in Fig. 3, we add Burst Buffer Management (BBM) in the Network 
Applications layer. It is one of the most important parts of BFSM and is used to manage the 
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Fig. 2. SDON architecture [3] 
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Fig. 3. Network applications in the controller 
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burst-flow buffers in the source OBS nodes. The source node sends out status messages to the 
BBM, containing the information of the burst and the burst-flow buffer. Meanwhile, BBM 
sends control messages to the source node for specifying the size of a burst-flow, setting the 
time threshold for buffering bursts, obtaining the remainder space in the burst-flow buffer, and 
so on. 
 

3.2 Signaling and Processing Sequences 
A UCP of the OBS network should meet the requirements of BCP switching and resource 
reservation. In the SDN-based OBS networks applying OpenFlow, a central controller 
processes the routing and resource scheduling, and then inserts appropriate flow entries into all 
OBS nodes on the selected routing path. Each OBS node should configure the flow table. 

In traditional OpenFlow-based networks, if an arrival packet matches with the existing flow 
entries of the flow table in the OpenFlow switch, the corresponding action of the matching 
flow entry will be performed. However, if there is no matching flow entry, the switch will send 
the packet to the central controller for further processing. However, the switching granularity 
is the optical burst which is aggregated by packets with the same destination, and the bursts 
propagate in wavelength channels without any Optical/ Electronic (O/E) translation. The 
signaling procedures of the OTOCM increase the number of messages for the controller to 
respond to, the average latency of the controller to process each message, and the bandwidth 
occupancy of the control channels between the controller and the switches. 

An OpenFlow-enabled OBS node is component of two parts: edge-node and core-node, 
which undertake different jobs. An edge-node assembles IP packets into bursts, sends the 
Packet-In message to the controller, and sends the BCP onto the control channel after being 
inserted with a burst-flow entry. The core node may have multiple physical ports of control 
channels and corresponding switching fabric ports for data channels [4]. 
 

Source OBS
Edge-Node

 Source OBS
 Core-Node

Other OBS  
Nodes

SDN
Controller

① Packet In Msg.

② Flow Mod Msg.

② Flow Mod Msg.

③  Loading 
Completion Msg.

④ Flow Mod Msg.

 

Fig. 4. Signaling procedures of BFSM between the controller and the OBS nodes 

To solve the problems raised by the OTOCM mechanism, in the proposed BFSM, only one 
Packet-In message containing the information of a burst-flow is sent to the controller for 
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resource reservation. Fig. 4 describes the detailed signaling procedures of the BFSM between 
the controller and the OpenFlow-enabled OBS nodes. 

The signaling procedures applied in the SDN-based OBS network presented in Fig. 4 
correspond to the Steps 1 to 4 depicted in Fig. 5. Comparing to the OTOCM proposed in [4, 5], 
in BFSM, a Packet-In message contains the information of a burst-flow instead of one burst, 
and the controller can process more bursts while responding one Packet-In message. 
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Fig. 5. Processing sequences of BFSM in the SDN-based OBS networks 

The BFSM in the SDN-based OBS network works as follows. 

Step 0: Generate a burst-flow 

The source OBS edge-node aggregates packets belonging to a flow with the same 
destination into bursts and creates their corresponding BCPs. Then, the same-destination 
bursts are stored in the burst-flow buffer. When the burst-flow buffer is full, or all bursts of a 
flow have been assembled in the buffer, the bursts in the buffer will comprise a burst-flow. 

Step 1: Send a Packet-In message 

The source edge-node encapsulates the BCP of the first burst in a Packet-In message and 
sends it to the controller to request an end-to-end optical path for the burst-flow. This BCP 
contains the burst-flow information, including the number of bursts, burst size, etc. 

Step 2: Insert flow entries into the OBS nodes except the source 

The controller allocates resource and calculates an end-to-end optical virtual path for the 
burst-flow. The corresponding flow entries are encapsulated in a Flow-Mod message which is 
sent by the controller to add, delete or modify the entities of the flow table in the switch. The 
Flow Information field stores the resource reservation information (including the number of 
bursts, the number of bursts that have reserved wavelength successfully, etc.) of each burst in 
the burst-flow. The Flow-Mod message is sent to all OBS nodes along the selected path except 
the source edge-node. 

Step 3: Send a Loading-Completion message 

The OBS node informs the controller with a Load-Completion message to confirm that a 
new burst-flow entry is loaded. The source core-node of the optical virtual path sends a 
Loading-Completion message to the controller when the flow entry is loaded into it. In order to 
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decrease the number of messages to which the controller responds, only the source core-node 
takes this step. 

Step 4: Insert the flow entry into the source 

Receiving the Loading-Completion message, the controller encapsulates BCP and flow 
entry in a Flow-Mod message, and sends the message to the source edge-node. 

Step 5: Send BCPs of the burst-flow 

The source edge-node updates its flow table and extracts the BCP of the first burst from the 
Flow-Mod message. After sending the extracted BCP on the control channel, the source node 
injects other BCPs of the burst-flow into the control channel in order. All BCPs are transported 
along the selected path, and the Packet IDs of their corresponding bursts are stored in each 
node on arrival in advance. If the resource reservation for a burst fails, its corresponding BCP 
would be discarded. 

Step 6: Send bursts in the burst-flow 

Once the BCP of a burst has set off, the corresponding burst is released to the data channel 
by the source edge-node after the offset time, and reaches the destination node transparently. 
Only the bursts having reserved successfully can enter into the data channel, and the other 
bursts are dropped at the source edge-node. 

Step 7: Disassemble bursts and delete the corresponding flow entries 

The destination edge-node disassembles bursts into packets, and all nodes along the selected 
path delete the corresponding flow entries. 

4. Reservation with More Usage Algorithm 
In this section, the reservation with more channel usage (RMCU) algorithm is presented, and 
some examples are given to illustrate the operation process of the RMCU. In the controller, 
RMCU is loaded in Resource Allocation to schedule burst-flows and allocate channel resource 
to them. 

4.1 Algorithm Description 

The RMCU aims to reserve more bursts of a burst-flow in one channel in order to make full 
use of channel resource and avoid high burst loss rate. In the flow table of an OBS node, a 
one-to-one relationship exists between the flow and its entry with one output port, and all 
bursts of a burst-flow transmit through the same data channel without any optical buffer. 
Therefore, the arrival time of each burst is predictable. The RMCU firstly contrasts the 
available channel resource during the time between the first burst and the last arriving burst. 
Then, the channel having the most vacant resource for the burst-flow will be selected. When 
the controller makes reservations on the last link, it applies the RMCU algorithm to modify the 
previous link reservation information. The old information is inconsistent with the latest 
information of the link reservation. That is to say, if the last link and its previous one are both 
reserved successfully, the resource reserved by the bursts in the previous link would be 
released, and the corresponding reservation information is modified to be Failure. 

In Table 1, the notations for describing the RMCU are given. The leisure horizon is the last 
time for the channel to be scheduled for the burst-flow. Because of the interval time between 
bursts in a burst-flow, the channel resource has not been reserved completely, which generates 
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some gaps between burst reservations. The RMCU regards the resource within the gaps as 
available leisure resource elements and stores them in the gap lists for new reservations. 
 

Table 1. Notation list 
Notation Description Notation Description 

C set of channels in a link  Li gap list of the i-th channel 
Ci the i-th channel in a link ti the leisure horizon of the i-th channel 
ts beginning of reservation time te end of reservation time 
B reservation information in current 

link  
B’ reservation information in previous 

link 
N the number of bursts in a 

burst-flow 
ni the number of available leisure 

resource elements in the gap list of the 
i-th channel 

 
Next, we describe how the RMCU works to reserve the wavelength bandwidth on the i-th 

link of a routing path of a burst-flow. 

 
Algorithm: RMCU 
 
Step 1: Calculate Ci available resource, and select the appropriate channel for transporting 

If (the leisure horizon ti precedes the burst-flow arrival time ts) 
 Select the channel with the minimum gap between ti and ts. 

Else 
 Calculate ni in the Li between ts and te, and select the channel with maximum ni. 

Step 2: Reserve resource for the bursts in the burst-flow 
If (the resource storing in Li is unused) 

Reserve N bursts in the burst-flow, and update B and ti. 
Store the available gaps in the Li. 

Else 
Access Li to find the available resource element for each burst in the burst- 
flow. 
If (there is available resource) 

                             Reserve bursts, and update B. 
If (the leisure horizon ti precedes the subsequent burst arrival time) 

Reserve all subsequent bursts in the burst-flow, and update B and ti. 
Store the available gaps in Li. 

Step 3: If (the last link is to make reservations) 
Modify B’ which is inconsistent with B, and release the corresponding reservation 
resource. 

 

The RMCU can reuse the wavelength bandwidth for transmitting bursts as much as possible, 
and sometimes reallocate the resources to other burst-flows. The channels with more available 
resource will be reused preferentially. If the channel leisure horizon precedes the arrival time 
of any burst of the other burst-flows, the RMCU can successfully reserve bandwidth for the 
subsequent bursts. 
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4.2 Illustration Examples 
In the BFSM-based OBS networks applying the RMCU algorithm, the channels selected for 
transporting burst-flows have the minimum gap between ts and the channel leisure horizon, or 
have the most available resource in the gap list. Meanwhile, the RMCU stores the available 
gaps between burst reservations in the gap list for the next allocation, and makes new 
reservations within them. Therefore, the RMCU can reduce the waste of channel resource and 
allocate more resource for burst-flows, which improve the resource utilization and reduce the 
burst loss rate. 

We use some examples to illustrate the operation of the proposed RMCU. Assume a link has 
three channels that have different channel leisure horizons, i.e., t1, t2 and t3, respectively. gi is 
the gap between ti and ts. 

For example, in Fig. 6(a), three channel leisure horizons are less than the burst-flow arrival 
time ts, and g3, the gap between the third channel leisure horizon t3 and ts, is the smallest. 
Therefore, the third channel C3 is selected for transmitting the burst-flow. However, when 
only one channel leisure horizon is less than ts, the channel is the only choice for the burst-flow 
(shown in Fig. 6(b)). Meanwhile, a new reservation can be made within the gap g3, and RMCU 
stores it in the gap list. 

C1

C2

C3

t1

ts

g1

g2

g3

Resource after channel 
leisure horizon

Time

t2

t3

         

C1

C2

C3

ts

g3

Resource after channel 
leisure horizon

Time

t1

t2

t3

 
(a) Three channel leisure horizons before ts                  (b) One channel leisure horizon before ts     

Fig. 6. The channel leisure horizons before the burst-flow arrival time ts 

In Fig. 7, for a burst-flow, ts is less than the three channel leisure horizons, which results in 
making use of the leisure resource element stored in the gap lists. As shown in Fig. 7(a), for 
the time period between ts and te, the channel resource was reserved. Then, the RMCU chooses 
the first channel C1 which has maximum leisure resource elements (n1=33) in the gap list 
between ts and te for a burst-flow. If the channel leisure horizon t1 is less than te (Fig. 7(b)), the 
third channel C3 having the maximum leisure resource elements (n3=30) will be selected for 
the burst-flow. 

5. Simulation and Evaluation 

In this section, the performance of the proposed RMCU is compared with the classical OBS 
and OTOCM via simulation in terms of burst loss rate, the number of Packet-In messages that 
a controller responds to per second, and the average latency of the controller to process a 
message. The latter two are main performance indexes of the SDN controller [18].  
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C1

C2

C3

ts

n1 = 33

n2 = 16

n3 = 21 

te

…

…

…

Leisure resource for 
reallocation

Resource after channel 
leisure horizon

Time

t1

t2

t3

      

C1

C2

C3

ts

n1 = 27

n2 = 16

n3 =  30

te

…

…

…

Leisure resource for 
reallocation

Resource after channel 
leisure horizon

Time

t1

t2

t3

 
(a) Three channel leisure horizons after te                      (b) Two channel leisure horizons after te 

Fig. 7. The channel leisure horizons after the burst-flow arrival time ts 

5.1 Simulation Setting 
The simulation platform is a six-node ring SDN-based OBS network with one controller, and 
the simulation was run on a 64-bit Windows operating system containing eight physical cores 
from Intel Xeon(R) E5-2620 processors, and 7.64 GB RAM. The parameter settings of the 
simulation [24] are listed in Table 2. 

Table 2. Simulation Setting 
Parameter Value 

burst size  1 Mbit 
transmission rate of data channel 8.6 × 109 bps 
data channel propagation delay 5 × 10-5 s 

propagation delay of data channel 
1.3 × 109 bps transmission rate of control channel 

control channel propagation delay 
4.35 × 10-5 s transmission rate between controller and OBS node 

offset time 1 × 10-6 s 
the number of generated bursts 5 × 104 

 
The numbers of busts in a burst-flow (i.e. the size of a burst-flow) are different in the three 

simulation scenarios. Once the number of bursts in the burst-flow buffer reaches the set 
burst-flow size, those bursts will be assembled together into a burst-flow. Each scenario ran 
ten times with different seeds. The simulation results given later are the average values of the 
ten simulation runs. 

Cbench [25] is the standard tool for evaluating OpenFlow controller performances by 
emulating OpenFlow-enabled switches [18, 19, 20, 23]. Cbench generates Packet-In messages 
and sends them to the controller to measure the main performance indexes of the SDN 
controllers [18, 19, 20] including the number of Packet-In messages that a controller responds 
to per second, and the average latency of the controller to process a message. Therefore, in our 
work, the two main performance indexes are used for performance evaluation. In future, 5G 
scenario [26] will be considered for further enhanced user’s quality of experience (QoE) [27]. 
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5.2 Simulation Results and Analysis 
Before describing the simulation scenarios, some constraints in the simulation are set: 

• The controller should respond to each received Packet-In message; 
• No collision and interference happens during burst propagation; 
• Each OBS node can be both source and destination; 
• Sending and receiving burst-flows in each OBS node are independent; 
• There is no optical buffer and O/E conversion during the burst propagation.  

(1) Scenario 1: comparison with the classical OBS 

In the classical OBS networks, the burst scheduler makes a reservation for every burst. In 
order to make sure that the controller in the BFSM-based case makes a reservation for each 
burst, the size of the burst-flow buffer is equal to the size of one burst in this scenario.  

Fig. 8 plots the burst loss rates between the BFSM-based OBS and classical OBS networks. 
In the simulation, the resource scheduling algorithm used in both cases was First-Fit (FF), a 
classical scheduling scheme of OBS networks. Their burst loss rates are almost the same when 
the offered load is low (between 0.1 and 0.3). However, if the offered load is higher than 0.3, 
the burst loss rate of the BFSM-based case is better than that of the classical OBS due to the 
central control of the SDN. It is worth noting that the advantage of the BFSM-based OBS is 
increased as the offered load increases. This proves that the SDN architecture provides 
network-wide scheduling ability and can avoid channel congestion better than the non-SDN 
case. Meanwhile, in the BFSM case, a burst should be discarded at the source node if its 
required resource cannot be reserved successfully at any node on its path, and the treatment 
can improve the channel resource utilization. 
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Fig. 8. Burst loss rates of two SDN-based and non-SDN OBS networks 

Because there is no optical buffer and O/E conversion, the nodal processing delay in the 
intermediate node can be ignored. In the BFSM-based OBS, the average hop count and 
average end-to-end delay are 1.765 and 3.037 × 10-4 s, respectively. The numerical results 
indicate that the average end-to-end delay is almost equal to the product of the average hop 
multiplied by the delay of one hop (=1.72 × 10-4 s), and the BFSM hardly increases the 
end-to-end delay for bursts.  
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(2) Scenario 2: comparison with the OTOCM-based OBS 

For Packet-In messages, the throughput is calculated by the number of Packet-In messages 
that a controller responds to per second, and the average latency is calculated by the round-trip 
time (RTT) from the source OBS edge-node to the controller. The size of the burst-flow in the 
BFSM case is, with uniform probability, between 20 and 40.  

In the OTOCM-based OBS, the source node sends a Packet-In message to the controller 
after assembling one burst, and the control granularity of the resource reservation is the burst. 
However, in the BFSM-based OBS, the control granularity of the resource reservation is the 
burst-flow. FF is also the resource scheduling algorithm applied in the BFSM-based and 
OTOCM-based OBS cases in this scenario. 

Table 3 shows that the maximum number of Packet-In messages in the BFSM-based OBS 
is three orders of magnitude less than that of the OTOCM. 
 

Table 3. Maximum number of Packet-In messages (offered load = 1) 
Control mechanism Messages per second 
OTOCM-based OBS 142931 
BFSM-based OBS 4730 

 
The response latencies are shown in Table 4. The BFSM-based OBS has the minimum 

response latency at 189.2 μs, and that of the OTOCM-based OBS is at 190 μs, because the 
BFSM-based OBS sends fewer Packet-In messages to the controller per second. That is, the 
fewer Packet-In messages that are processed, the lower the process time cost for the controller. 
Meanwhile, if the number of Packet-In messages is smaller, the bandwidth demand to the 
controller is lower. 
 

Table 4. Response latency 
Control mechanism Minimum response latency Average response latency 
OTOCM-based OBS 189.995 μs 191.476 μs 
BFSM-based OBS 189.268 μs 190.055 μs 

 
 
In the BFSM-based OBS, the average number of bursts in a burst-flow is 30. As shown in 

Table 4, we can calculate that the average response latency of a burst, that is the average 
processing latency of the BFSM-based OBS, is 6.322 μs, about 30 times less than that of the 
OTOCM-based OBS (=190 μs).  

Therefore, the BFSM-based OBS sends fewer Packet-In messages to the controller for 
processing and has lower average latency not only for one Packet-In message but also for one 
burst. In addition, the required bandwidth to the controller is decreased in the BFSM-based 
OBS. Compared with the OTOCM-based OBS network, the BFSM-based OBS network 
generates fewer Packet-In messages per second to which a controller responds, and the 
average latency of the controller to process each message is less, while the traffic between the 
nodes and the controller is less too. 

(3) Scenario 3: impact of the burst-flow size 

In this scenario, we consider the impact of the burst-flow size in the BFSM applying the 
RMCU. The number of bursts in each burst-flow is set to be 10 (the small size), 50 (the median 
size) or 500 (the large size), respectively.  
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Fig. 9 shows the contrasted burst loss rates of different sized burst-flows. A burst-flow with 
the larger size has the lower burst loss rate. When the offered load is higher than 0.6, more 
bursts in the small size burst-flow are discarded. We can see from Fig. 9 that the larger the 
burst-flow size is, the fewer the number of bursts in the BFSM-based OBS networks are 
discarded. This means that the larger sized case can provide better burst transport service. 
Meanwhile, the larger sized burst-flow results in a smaller number of burst-flows, and fewer 
Packet-In messages generated by the source OBS node, which decreases the workload of the 
controller. That is to say, the time cost of the controller to process the messages received from 
the OBS nodes and the required bandwidth between the nodes and the controller will decrease. 
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Fig. 9. Burst loss rates for different burst-flow sizes 

6. Conclusion 
To address the issue of the underutilization of network resource in SDN-based OBS networks, 
we presented a burst-flow scheduling mechanism BFSM in this paper. Our main contributions 
are: 1) extending the structure of the flow table, 2) adding a BBM application in the central 
controller, 3) giving the process and signaling procedure of the burst-flow, and 4) proposing a 
resource scheduling algorithm taking into account channel usage. The simulation results show 
that the proposed mechanism can provide good controller performance for the SDN-based 
network. In addition, when the burst-flow size is larger, more bursts can reach their 
destinations, and resource utilization is higher. Due to adding the burst-flow buffer in the 
source edge-node, extending the flow table, and increasing the burst-flow assembling time, the 
space and time consumption will increase to some extent. Therefore, how to define the sizes of 
burst-flow buffer and the flow information is our next work. Overall, BFSM offers optimal 
controller performance and a good solution of UCP for OBS networks.  
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