
IEEE TRANSACTIONS ON CLOUD COMPUTING 1

Statistical Learning for Anomaly Detection
in Cloud Server Systems:

A Multi-Order Markov Chain Framework
Wenyao Sha1, Yongxin Zhu1, Min Chen2, Tian Huang1

1 School of Microelectronics, Shanghai Jiao Tong University, China
2 School of Computer Science and Technology, Huazhong University of Science and Technology, China

shawenyao@gmail.com, zhuyongxin@sjtu.edu.cn, minchen@ieee.org, ian malcolm@sjtu.edu.cn

Abstract—Abstract - As a major strategy to ensure the safety of IT infrastructure, anomaly detection plays a more important role in
cloud computing platform which hosts the entire applications and data. On top of the classic Markov chain model, we proposed in this
paper a feasible multi-order Markov chain based framework for anomaly detection. In this approach, both the high-order Markov chain
and multivariate time series are adopted to compose a scheme described in algorithms along with the training procedure in the form of
statistical learning framework. To curb time and space complexity, the algorithms are designed and implemented with non-zero value
table and logarithm values in initial and transition matrices. For validation, the series of system calls and the corresponding return
values are extracted from classic Defense Advanced Research Projects Agency (DARPA) intrusion detection evaluation data set to
form a two-dimensional test input set. The testing results show that the multi-order approach is able to produce more effective
indicators: in addition to the absolute values given by an individual single-order model, the changes in ranking positions of outputs from
different-order ones also correlate closely with abnormal behaviours.

Index Terms—Kth-order Markov chain, multivariate time series, anomaly detection, statistical learning
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1 INTRODUCTION

Cloud computing comes with indispensable dependency on
networked computer systems. Unfortunately, while every
one knows there is no guarantee of its well-being, we tend
to simply ignore this painful idea. An increasing number of
academical and industrial users are starting to rely solely
on cloud computing servers that host entire applications
and storage. In fact, these cloud computing and services
in the form of distributed and open structure become ob-
vious targets for potential threats. Thus, taking care of both
business and personal data, servers expose critical safety
and availability issues. Their invulnerability are of major
importance to both individuals and the society.

However, during catastrophic disasters such as intru-
sion, crash or breakdown, the anomalies must be first dis-
covered before any actual remedy could come to its aid.
Being recessive at the early stage, such problems would not
exhibit distinct traits and often lead to delayed responses
and irrecoverable results. Fortunately, a server is the ideal
instance whose behavior manifests regularity statistically.
This lays the foundation for any anomaly detection algo-
rithm based on machine-learning or data-mining. All of
them adopt the idea of extracting the patterns within the
(massive) training set and thus raise the alarm on the deviate
ones.

In the literature, anomaly or intrusion detection was
implemented in great variety of approaches [1]. These ap-
proaches are usually categorized into three groups, i.e. sta-
tistical approaches, machine learning approaches and data

mining approaches [2], [3]:
In statistical approaches, anomaly or intrusion detection

systems usually watch behaviors of observed objects to
comprise statistical distributions as a set of trained profiles
during the training phase. These systems then apply the set
of trained profiles by comparing them against a new set of
profiles of observed objects during the detection phase. An
anomaly or intrusion is detected if these two sets of profiles
do not match. In general, any incident whose occurrence
frequency goes beyond standard deviations from statistical
normal ranges raises an alarm [4].

Machine learning based approaches tend to reduce the
supervision costs during the training phase of statistical
approaches by enabling machine learning based systems
to learn and improve their performance on their own.
These systems are usually designed as a framework that
can improve its performance in a loop cycle by adapting
its execution strategies according to execution feedbacks,
e.g. system call sequence analysis, Bayesian network and
Markov model execution results. Neural networks and Hid-
den Markov Model have been proved to be useful tech-
niques as shown in in [5] [6].

Data mining based approaches exploit unknown rules and
patterns by exploring large amounts of data collected either
online or off line. Anomaly or intrusion detection systems
can be improved with additional inputs in terms of hid-
den patterns, associations, changes, and events found in
data. Common technologies involved in data mining ap-
proaches include classification, clustering and outlier detec-
tion, and association rule discovery. Application of typical
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data-mining algorithms such as K-nearest neighbour or
clustering could be found in [7].

In the context of this paper, we focus on approaches
in categories of statistical and machine learning based ap-
proaches. In [8], [9], [10], [11], theories of the classic Markov
model are applied so as to detect anomalous patterns in
the system, using the ordering property of events as proposed
in [9]. [12] introduces the high-order Markov chain as an
extension. Several approaches are then introduced to over-
come the formidable cost that seems highly likely to come
with it, including the hybrid model in [12] or support vector
machine in [13].

In additional to statistical patterns, as originally pro-
posed in [14], the time series of system calls are now by
common consent a powerful tool in identifying the nature
of a system’s behavior. Due to system calls’ privileges, a
large number of researches of intrusion detection, including
[15] and [16] are based on exploiting, modelling, or learning
from the audit data of system calls. In 1998, the Cyber
Systems and Technology Group of MIT Lincoln Laboratory
conducted a 7-week simulation of intrusion in the back-
ground of daily usage, and then released all their data
named as classic DARPA Intrusion Detection Evaluation
Data Set [17].

The major contribution of the paper is our approach
based on multi-order Markov chains, which reveals that
the combination of mixed-order Markov chains would bring
considerably interesting and substantial improvement over
any single-order one with fairly reasonable cost. Utilizing
not only the multiple order property, this approach effec-
tively suits the application of anomaly detection in addition
to its first practice in rainfall modelling in [18]. In our
practice, the relative ranking positions between probabilities
from multi-order models serve as a new effective indicator
for anomalies, which refers to our finding that the ascending
order suggests normal, while the descending one exhibits
anomalous. Our approach differs from a recent model [19],
which exploits mixture of Markov chains by incorporat-
ing n-gram transitions to model the normal behavior of
users’ HTTP requests rather than system calls in underlying
servers.

Secondly, we take into accounts a new category of inputs
(the return values of system calls) to improve the effec-
tiveness of the multi-order Markov chain based approach
and form a two-dimensional model. In the application of
anomaly detection, the conventional notion of using sys-
tem calls to identify a system’s behaviour [14], [15], [16]
is insufficient in that it does not take into account the
resulting status of execution. In a few more recent work
[20] [21], return values of system calls were to taken into
consideration to detect or interpret the anomalies.

In this paper, we further looked into time spans of [17]
[20] that were not explored in using our approach based on
multi-order Markov chain scheme. We also provide proof to
learning process as part of our scheme framework. The new
time span exploration and learning process proof were not
covered in [17] [20].

The remainder of the paper is organized as follows. Sec-
tion 2 formulates the problem and explains the basic theory
of the Markov chain model. Section 3 explains our approach
to statistical training as well as our high-order models

enhanced with multivariate sequence analysis. Section 4
discusses some detailed issues involving algorithm design
and complexity. A simplified example of model training
and testing is also illustrated in Section 4. Validation results
based on the data set is given in Section 5, and a general
conclusion is presented in Section 6.

2 PROBLEM FORMULATION AND PRELIMINARIES

OF MARKOV CHAIN MODEL

2.1 Problem Formulation

Fig. 1 shows a segment of typical auditing data whose
first three lines indicate that the operating system opens
or closes a file, reads or writes into the file and creates
or terminates a process. On a much larger scale than the
system calls executed, we are able to tell the difference
between a normal system condition and an abnormal one
as shown in the fourth row. However, on the scale as small
as the first three lines, how could we learn from the case
and differentiate the malicious activities? In practice, these
system calls in the first three lines of Fig.1 might be used
by any applications whose intentions cannot be determined
as kind or malicious. To handle the uncertainty in anomaly
detection due to the single indicator, results from multiple
indicators or even multiple models are desired to trigger a
proper alarm against prejudicial operations. In this paper,
we address the above question with our scheme based on
the multi-order Markov chain based model.

To make the forthcoming analysis easier to understand,
it is also worth noting that concurrency is ignored on any
level. Instead, it is considered as part of the deterministic
nature of the auditing mechanism, which decides how every
one of the simultaneous system calls gets recorded in a
definitive way.

2.2 The Classical Markov Chain

In our approach, we use the discrete-time Markov chain
model with finite state space to characterize the stochastic
process, and it shares several remarkable similarities with
the approaches for anomaly detection as already evidenced
by [8], [9], [10], [11], [12], [13].

2.2.1 The Markov Property and Time-Homogeneous As-
sumption

Theoretically, in order for the model to hold, it is im-
plicitly assumed that all the observation sequences sat-
isfy the characteristics of both Markov property and time-
homogeneousness, a reasonable and necessary simplifica-
tion based on the potential regularity and periodicity of a
server system. Consider the state space X with m discrete
states:

X = {X1, X2, · · · , Xm} (1)

and the observation sequence xn:

xn ∈ X, n = 1, 2, ..., Nx (2)

If a sequence xn owns Markov property, then it satisfies
that the present state results are solely from the last one re-
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10:09:10 10:09:30 10:09:32 10:09:33 10:09:34 10:09:40 10:10:00
· · · open() ioctl() close() close() kill() fork() exit() · · ·

success success success failure failure success success
normal abnormal

Fig. 1: The time series of system calls

gardless of transitions the system might have gone through
before:

P
(
xn = Xin |xn−1 = Xin−1

, · · · , x2 = Xi2 , x1 = Xi1

)

= P
(
xn = Xin |xn−1 = Xin−1

)
for n ≥ 2 (3)

In addition, the property of time-homogeneous (or sta-
tionary) ensures that the way how current state affects the
next is independent of time:

P (xn+1 = Xj |xn = Xi) = P (xn = Xj|xn−1 = Xi) (4)

Therefore, every single step of system variation would con-
form to a unified transition matrix, while keeping it blind to
any time-sensitive anomalies.

2.2.2 The Model of Markov Chain

From the training sequence xn in equation (2), we can
derive both the initial probability distribution matrix Q,
where each element qi represents the initial probability of
the corresponding state Xi:

Q =
[
q1 · · · qi · · · qm

]
,

where qi = P (xn = Xi) (5)

and the one-step transition probability distribution matrix
P , where each element pij represents the transition proba-
bility from Xi to Xj :

P =
[
pij

]

m × m ,

where pij = P (xn = Xj |xn−1 = Xi) . (6)

The model is completely specified once P and Q is given,
hence we denote it as π(P,Q).

3 STATISTICAL LEARNING FRAMEWORK, HIGH-
ORDER AND MULTIVARIATE MARKOV CHAIN MODEL

3.1 Our Statistical Learning Framework

To adapt to the usual supervised learning paradigm, for the
original state space X given in (1), we construct the first-
order Markov chain transition space X1:

X1 = { [ X1 X1 ], [ X1 X2 ],

[ X1 X3 ], · · · , [ Xm Xm ] } (7)

which consists of every possible transition (totaling m2) in
the first-order Markov process. Similarly, we have the binary
state space Y similar to the fourth row in Fig. 1:

Y = { normal, abnormal } (8)

So the entire set of input data D can be represented as
coordinates mapping from space X1 to space Y

D =
{
(x1

1, y1), (x
1
2, y2), · · · , (x

1
Nx−1, yNx−1)

}
,

where x1
n ∈ X1 and yn ∈ Y (9)

where the series of x1
n is constructed using the original xn

in (2):

x1
n = [ xn xn+1 ] ∈ X1, n = 1, 2, ..., Nx − 1 (10)

For training purpose, if series xn (and thus x1
n) are recorded

in a completely anomaly-free environment, all yn are set
as a constant that represents normal system condition, and
therefore will be considered irrelevant in the process of
training.

3.1.1 Maximum Likelihood Training
In order to learn from the input data set D, we try to find
the model π(P,Q) that maximizes the value of

P (D | π(P,Q)) (11)

which is the probability of data set D given the model
π(P,Q) and it can be easily calculated as

P (D | π(P,Q)) =







q
x1
, Nx = 1

q
x1

Nx∏

n=2
p

xn−1xn
, Nx ≥ 2

(12)

which equals the product of the initial probability and suc-
ceeding transition probabilities. To maximize this product,
we aim to maximize every multiplier in equation (12) under
the constraints of:

m∑

i=1

qi = 1 (13)

qi ∈ [ 0, 1 ], i = 1, 2, · · · ,m (14)

m∑

i=1

pij = 1, j = 1, 2, · · · ,m (15)

pij ∈ [ 0, 1 ], i = 1, 2, · · · ,m, j = 1, 2, · · · ,m (16)

From the inequality of arithmetic and geometric means,
we know that once the sum of several values are pre-
determined, the product of these values will be maximized
if and only if all of them are the same, thus:

qi =
The Number of Occurences of Xi in xn

Nx
,

i = 1, 2, · · · ,m (17)

pij =
The Number of Occurences of [ Xi Xj ] in x1

n

Nx − 1
,

i = 1, 2, · · · ,m, j = 1, 2, · · · ,m (18)

Till now we have already got everything we need for the
model π(P,Q). Furthermore, we can calculate the probabil-
ity of any other date set D′ given π(P,Q) using the same
equation in (12). In a probabilistic sense, the value given in
(12) also serves as a quantitative indicator of ”anomaliness”
by measuring how significantly the data set D′ used in the
equation deviates from the training data D, as will be shown
later.
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3.2 High-order and Multivariate Markov Chain Model

As states Xi of Markov chain are intermediate derivatives,
there is no specification about what kind of state Xi really
is. Therefore, by constructing new states out of the original
ones, we can derive a generalized variation that applies to
the high-order or multivariate conditions.

3.2.1 Our High-order Markov Chain Model

Given sequence xn that satisfies the Kth-order Markov
property, where the current state depends on not only the
previous statuses but also the K preceding ones:

P
(
xn = Xin |xn−1 = Xin−1

, · · · , x2 = Xi2 , x1 = Xi1

)

= P
(
xn = Xin |xn−1 = Xin−1

, · · · , xn−K = Xin−K

)

for n ≥ K + 1 (19)

we construct new sequence x∗

n from xn:

x∗

n =
[
xn−K+1 · · · xn

]

︸ ︷︷ ︸

K

∈ X∗, n = K,K + 1, ..., Nx

(20)

As a sequence directly derived from xn, x∗

n is the first-
order equivalent of xn which satisfies the classical Markov
property defined in equation (3). The new state space X∗

comprises mK states in total:

X∗ = {X∗

1 , · · · , X
∗

i , · · · , X
∗

mK} (21)

where each state X∗

i is a certain permutation of the K
original states:

X∗

i =
[
XθK(i) · · · Xθj(i) · · · Xθ1(i)

]
(22)

The permutation θj(i) could be defined as a base m number
up to K-digits:

θj (i) =
1

mj−1

{ [

i−

j−1
∑

ω=1

(
θω (i) mω−1

)

]

mod mj

}

,

j = 1 · · ·K. (23)

Similarly to equation (5), the initial matrix of all mK

initial states is as follows:

Q∗ =
[
q∗1 · · · q∗i · · · q∗mK

]
(24)

where q∗i represents the initial probability distribution of
X∗

i :

q∗i = P (x∗

n = X∗

i ) for n ≥ K. (25)

Slightly different from the classical model, the total
amount of possible transitions is limited to mK ×m instead
of the entire mK ×mK ones in the first-order condition, so
the new transition matrix would be:

P ∗ =
[
p∗ij

]

mK × m (26)

where:

p∗ij = P
(
xn = Xj|x

∗

n−1 = X∗

i

)
. (27)

Therefore, the model in the Kth-order case is π(P ∗, Q∗).

Similar to the first-order Markov chain transition space
X1 in (28), we construct the Kth-order Markov chain transi-
tion space XK :

XK = { [ X1 X1 · · · X1 X1
︸ ︷︷ ︸

K

X1 ],

[ X1 X1 · · · X1 X2
︸ ︷︷ ︸

K

X1 ],

· · · ,

[ Xm Xm · · · Xm Xm
︸ ︷︷ ︸

K

Xm ] } (28)

which consists of every possible transition (totaling mK×m)
in the Kth-order Markov process. The label space Y remains
unchanged. Now input data set D can also be represented
as coordinates mapping from space XK to space Y

D =
{
(xK

1 , y1), (x
K
2 , y2), · · · , (x

K
Nx−K , yNx−K)

}
,

where xK
n ∈ XK and yn ∈ Y (29)

where the series of xK
n is constructed using the original xn

in (2) and x∗

n in (20):

xK
n = [ x∗

n xn+1 ] ∈ XK , n = K,K + 1, ..., Nx − 1 (30)

Correspondingly, equation (12) becomes:

P (D | π(P ∗, Q∗)) =







q∗
x∗

K

, Nx = K

q∗
x∗

K

Nx∏

n=K+1

p∗
x∗

n−1
x∗

n

, Nx ≥ K + 1

(31)

3.2.2 Enhancement with Multivariate Sequences

Given multiple sequences for anomaly detection, it is intu-
itive to apply the model to each of them in separation. In
this way, the hidden correlation among multiple variables
in these sequences are lost unfortunately, which might be
the very factor that contributes to anomalies. For example,
consider the following case, where Fig. 2 is a piece of

10:09:20 10:09:21 10:09:22 10:09:24 10:09:26
fork() fork() kill() open() open()

success success failure success failure

Fig. 2: Normal Series

10:09:20 10:09:21 10:09:22 10:09:24 10:09:26
fork() fork() kill() open() open()

success success failure success success

Fig. 3: Test Series 1

10:09:20 10:09:21 10:09:22 10:09:24 10:09:26
fork() fork() kill() open() open()
failure failure success failure sucess

Fig. 4: Test Series 2

time series collected in anomaly-free context, and we are
evaluating the likelihood of the test series in Fig. 3 and Fig.
4 being also normal.
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From a stand-alone point of view, all the transitions of
system calls and return values are legitimate, as their oc-
currences have already been observed in the training series.
The only difference is that Fig. 3, being almost the same as
the training series, may yield a higher likelihood than Fig. 4.
However, a closer look at the joint states of system calls and
return values tells us that none of the transitions in Fig. 4 are
possible. For example, the fork command with the return
value of failure can never transit into another fork with the
return value of failure in the normal series, which means
Fig. 4 actually stands for something more extreme than the
transitions along each dimension suggests. In other words,
looking at only one dimension of system calls or return
values at a time gives us less information than looking at
them jointly.

Therefore, combing these variables into a new space
would be a practically superior enhancement. Combining
multiple inter-related sequences as a multivariate into a sin-
gle model would be another feasible approach to improve
the sensitivity of detection. The example shown in Fig. 2,
Fig. 3 and Fig. 4 is not detectable by major existing methods
in the form of statistical pattern detection and time series
analysis [8] [9] [10] and [15].

For a S-dimensional sequence, if the original state spaces
are noted as X1, X2 to XS and each consists of m1, m2

or mS states respectively, the corresponding state space of
combination comprises totaly mS states:

mS =

S∏

i=1

mi (32)

and the new state space X(S) is given by:

X(S) = {X1(S), · · · , Xi(S), · · · , XmS (S)} (33)

each state Xi(S) of which is a combination of the original
states:

Xi(S) =
[
Xi1 · · · Xij · · · XiS

]
,

where 1 ≤ ij ≤ mj and j = 1, 2, ..., S (34)

where each element belongs to one of the original state
spaces:

Xij ∈ Xj , j = 1, 2, ..., S (35)

Hence, the multivariate sequences are able to comply with
the classical univariate Markov chain model π(P,Q) de-
scribed in previous sections.

Moreover, the variation of high-order and multivariate
model could be applied jointly, creating a S-dimensional
Kth-order Markov chain model π[P ∗(S), Q∗(S)] with S-
dimensional Kth-order Markov chain transition space
XK(S).

Though combination of sequences often results in higher
time and space complexity, in our practice of algorithm de-
sign discussed later, both of these generalizations are imple-
mented with complexity reduction techniques as the Multi-
order Markov Chain based model, where we utilize the
system calls and their return values as a two-dimensional
input (S = 2) of the 1st, 2nd and 3rd-order Markov chain
(K = 1, 2, 3).

4 ALGORITHM DESIGN AND IMPLEMENTATION

To formulate our algorithm, we follow the process of
anomaly detection workflow comprising of training stage
and test stage. On top of the generic training and testing
stages, we further tackle the issues of model order selection,
zero-probability event transform and sparse matrix storage
etc. Our solutions to these issues will be explained before
the complete algorithm is formulated.

4.1 Design Issues

Order of the model in our approach is the trade-off between
model complexity and generalizability. System of higher-
order tend to neutralize the idealization brought by the
assumption of Markov property and thus provides a more
sensitive response over anomalous exceptions. In other
words, high-order Markov chain generates larger support
for frequent patterns within the training set while producing
smaller support for rare ones at the same time. On the
contrary, high-order models might lead to overfitting for
noise or idiosyncrasy of the training sequence, and loses
the ability to generalize outside it. In consequence, Markov
chain models of up to the third order are utilized in our
simulation.

Zero-probability-event issues refer to the fact that due to
the non-exhaustive nature of any training sequence, one or
more elements in P or Q will remain zero after training, and
a single zero in the multipliers would ultimately dominate
the whole output value. Here a solution proposed in [8] is
implemented by replacing the zeros with a value far smaller
than any other element (yet still essentially different from
the real zero).

Another typical issue resulting from the non-
exhaustiveness of training set is the occurrence of com-
pletely new states in test sets. Even after going through all
the training data, what we consider as the state space X
could just be a subset of the real one because some states
simply might not have occurred at all in the recording of
training set. So for application purpose, we add a new
artificial state Xm+1 to the original space X to represent
“everything else”. In this way, without compromising any
accuracy of calculation, state space X will be independent of
the test set and we will not have to deal with an growing X
as we proceed.

4.2 Algorithm Design

The final algorithms that take both zero-probability events
and storage optimization into consideration are presented as
Algorithm 1-4. Algorithm 1, Training, represents the training
stage which processes the training set and generates the
initial probability distribution and transition probability
distribution matrices, of which the latter one is the major
result of the training stage. Algorithm 2, Testing, takes the
two matrices and the test set in and calculates its probability
of occurrence given the model trained. Algorithm 1 and
algorithm 2 also rely on two functions i.e. IncreaseTran-
sitionMatrix and GetTransitionMatrix to calculate transition
probabilities and retrieve values in these matrices.

Algorithm 3 and algorithm 4 are two functions called
during training and testing, which either increases a specific
element of transition matrix by one or returns its value.
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Algorithm 1 Training()

Input: Training sequence xn ∈ X (n = 1→ Nx), Number of states m, Order K
Output: Initial probability distribution matrix Q, Transition probability distribution matrix P

1: Initialize() // Set Q and P equal to 0
2: for n = K → Nx do
3: x∗

n ←
[
xn−K+1 xn−K+2 xn−K+3 · · · xn

]
// Construct new sequence in space X∗

4: end for
5: for n = K → Nx − 1 do
6: xK

n ←
[
x∗

n xn+1

]
// Construct new sequence in space XK

7: end for
8: for n = K → Nx do
9: if xn = Xi then

10: IncreaseInitialMatrix(i) // Get the index of xn and increase q∗i in Q by 1
11: end if
12: end for
13: for n = K → NX − 1 do
14: if xK

n = [ X∗

i Xj ] then
15: IncreaseTransitionMatrix(i, j) // Get the index of xK

n and increase p∗ij in P by 1
16: end if
17: end for
18: NormalizeInitialMatrix() // Divide the matrix Q by Nx −K
19: NormalizeTransitionMatrix() // Divide the matrix P by Nx −K − 1

Algorithm 2 Testing()

Input: Testing sequence yn ∈ X (n = 1→ Ny), Q, P
Output: Probability of yn given Q and P

1: for n = K → Ny do
2: y∗n ←

[
yn−K+1 yn−K+2 yn−K+3 · · · yn

]
// Construct new sequence in space X∗

3: end for
4: for n = K → Ny − 1 do

5: yKn ←
[
y∗n yn+1

]
// Construct new sequence in space XK

6: end for
7: for n = K → Ny do
8: if yn = Xi then
9: probability← GetInitialMatrix(i) // Get q∗i in Q

10: end if
11: end for
12: for n = K → Ny − 1 do
13: if yKn = [ X∗

i Xj ] then
14: probability← probability×GetTransitionMatrix(i, j) // Multiply by p∗ij in P
15: end if
16: end for
17: Output : probability

4.3 Time and Space Complexity

The training stage involves calculating the initial and tran-
sition matrices and takes approximately

O
(
mK+1

)
(36)

’s time, which grows either polynomially with the amount
of states or exponentially with the order of Markov chain.
The test stage requires nothing more than a series of multi-
plication and consumes about

O (Nx) (37)

’s time, which is linearly proportional to the length of the
testing data set.

On the other hand, the algorithm requires the matrix P ∗

and Q∗ be accessible at all time during the training and
testing stage, so it can consume memory space as large as

O
(
mK+1

)
(38)

4.4 Curbing the Complexity

The training algorithm, acting as a forefront overhead for
the testing algorithm, does not affect the real-time perfor-
mance of anomaly detection. Also, the testing algorithm
is simply a serial of continual multiplication which will
hardly become the burden of any modern processor. Even
in the cases where multiplying are considered unacceptably
time-consuming, it would be highly feasible to replace both
transition and initial matrices with their logarithm values
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Algorithm 3 IncreaseTransitionMatrix(i, j)

Input: The index of state in transition(i and j)
Output: Transition matrix (stored in boolean values), Nonzero value table

1: MAXNONZERO← 1× 104 // Define max number of nonzero values
2: if TransitionMatrixBit[i][j] = 0 then // If the nonzero value does not exist
3: CounterOfNonzeroValues← CounterOfNonzeroValues + 1 // Increase counter
4: if CounterOfNonzeroValues > MAXNONZERO then // If exceeded
5: Print : Error! Please increase MAXNONZERO! // Print message
6: exit // Algorithm aborted
7: end if
8: iOfNonzeroValues[CounterOfNonzeroValues]← i // Set index of nonzero value
9: jOfNonzeroValues[CounterOfNonzeroValues]← j // Set index of nonzero value

10: NonzeroValues[CounterOfNonzeroValues]← 1 // Set initial value
11: TransitionMatrixBit[i][j]← 1 // Set sign of the nonzero value
12: else // If the nonzero value already exists
13: for n = 1→ CounterOfNonzeroValues do
14: if iOfNonzeroValues[n] = i AND jOfNonzeroValues[n] = j then
15: break // Find where the nonzero value is stored
16: end if
17: end for
18: NonzeroValues[n]← NonzeroValues[n] + 1 // Increase the value by 1
19: end if

Algorithm 4 GetTransitionMatrix(i, j)

Input: The index of state in transition(i and j), Nonzero value table, Transition matrix (stored in binary bits)
Output: Probability of the transition from state i to state j

1: ZERO← 1× 10−5

2: if TransitionMatrixBit[i][j] = 0 then // If it is a zero
3:

4: return ZERO
5: else // If it is a nonzero value
6: for n = 1→ CounterOfNonzeroValues do
7: if iOfNonzeroValues[n] = i AND jOfNonzeroValues[n] = j then
8:

9: return NonzeroValues[n] // Find where the nonzero value is stored
10: end if
11: end for
12: end if

in the training stage beforehand, causing all multiplication
of the test stage substituted by addition, one of the basic
commands supported by any instruction set architecture.

As the amount of states and the order of model grow,
the memory consumption for storing transition matrix alone
could be formidable. However, when taking into account the
sparse feature of the matrix (which assumes a significant
amount of potentially possible transitions does not occur in
reality), a binary bit of memory space is already sufficient for
most of its elements. Together with the extra table declared
exclusively for saving all nonzero values and their indices
(with subjectively pre-determined array size), the revised al-
gorithm nonetheless succeeds in distinctly optimizing space
complexity at the cost of limited sacrifice in time complexity.
In our practice, the length of the non-zero value table is
set to 104 and no overflow has occurred, another proof
of how such a look-up approach manages to save storage
consumption without compromising any accuracy.

4.5 Implementation Illustration with an Example

For clarity, an example of model training and testing is
shown step by step as follows. Suppose the training data
set D, which are the series of system calls and return values
from a two-virtual-machine system in its normal running
state, are shown in Fig. 5 and Fig. 6,and a two-dimensional
(S = 2) model of 2nd-order (K = 2) is desired.

10:09:20 10:09:21 10:09:22 10:09:24 10:09:26
kill() fork() kill() fork() open()

success failure success failure failure
normal

Fig. 5: System call series of Virtual Machine 1 (training set)

First, the two-state space A and three-state space B could
be obtained and noted as:

A = {success, failure} = {a1, a2} (39)

B = {open(), kill(), fork()} = {b1, b2, b3} (40)
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10:09:20 10:09:21 10:09:22 10:09:24 10:09:26
fork() fork() kill() open() open()
failure failure success failure success

normal

Fig. 6: System call series of Virtual Machine 2 (training set)

For simplicity, the training sequences of return values and
system calls derived directly from Fig. 5 and 6 are noted as
RV1, SC1, RV2 and SC2 respectively:

RV1 = a1, a2, a1, a2, a2 (41)

SC1 = b2, b3, b2, b3, b1 (42)

RV2 = a2, a2, a1, a2, a1 (43)

SC2 = b3, b3, b2, b1, b1 (44)

Now we create the table for mapping from the input multi-
variate sequence to a univariate one as shown in TABLE 1,
and construct a univariate equivalent sequence xn (and the

TABLE 1: Mapping from [ RV1 SC1 RV2 SC2 ] to X

[ RV1 SC1 RV2 SC2 ] X

[ a1 b1 a1 b1 ] X1

[ a1 b1 a1 b2 ] X2

[ a1 b1 a1 b3 ] X3

· · · · · ·
[ a2 b3 a2 b1 ] X34

[ a2 b3 a2 b2 ] X35

[ a2 b3 a2 b3} X36

implicit state space X):

xn = {a1, b2, a2, b3} , {a2, b3, a2, b3} ,

{a1, b2, a1, b2} , {a2, b3, a2, b1} ,

{a2, b1, a1, b1} = X12, X36, X8, X34, X19 (45)

TABLE 2: Mapping from [ xn xn ] to X∗

[ xn xn ] X∗

[ X1 X1 ] X∗

1

[ X1 X2 ] X∗

2

[ X1 X3 ] X∗

3

· · · · · ·
[ X36 X34 ] X∗

1294

[ X36 X35 ] X∗

1295

[ X36 X36 ] X∗

1296

Then, the first-order equivalent sequence x∗

n (and the
implicit state space X∗) is given using the mapping in
TABLE 2:

x∗

n = {X12, X36} , {X36, X8} , {X8, X34} , {X34, X19}

= X∗

432, X
∗

1268, X
∗

286, X
∗

1207 (46)

So,

xK
n = [ X∗

432, X8 ], [ X
∗

1268, X34 ], [ X
∗

286, X19 ] (47)

Evidently, the initial matrix Q∗ (1 by 6 × 6) with only four
nonzero elements (q∗286 = q∗432 = q∗1207 = q∗1268 = 1/4):

Q∗ =
[
· · · 1

4 · · · 1
4 · · · 1

4 · · · 1
4 · · ·

]

1×1296
(48)

and the transition matrix P ∗ (36× 36 by 36) with only three
nonzero elements (p∗432,8 = p∗1268,34 = p∗286,19 = 1):

P ∗ =

















...
...

...
...

...
...

...
· · · 1 · · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

· · · · · · · · · 1 · · · · · · · · ·
...

...
...

...
...

...
...

· · · · · · · · · · · · · · · 1 · · ·
...

...
...

...
...

...
...

















1296×36

(49)

are established, which means we have the model π(P ∗, Q∗).
Therefore, the probability of every test sequence constructed
this way could be determined using equation (31). For
instance, given newly-observed series D′ shown in Fig. 7
and Fig. 8 as the test input sets, again the test sequences

10:19:30 10:19:31 10:19:32
fork() kill() fork()
failure success failure

Fig. 7: System call series of Virtual Machine 1 (test set 1)

10:19:30 10:19:31 10:09:32
fork() kill() open()
failure success failure

Fig. 8: System call series of Virtual Machine 2 (test set 1)

derived are noted as RV ′

1 , SC′

2, RV ′

1 , SC′

2:

RV ′

1 = a2, a1, a2 (50)

SC′

1 = b3, b2, b3 (51)

RV ′

2 = a2, a1, a2 (52)

SC′

2 = b3, b2, b1 (53)

Similarly, we have:

x′

n = {a2, b3, a2, b3} , {a1, b2, a1, b2} , {a2, b3, a2, b1}

= X36, X8, X34 (54)

x′∗

n = {X36, X8} , {X8, X34} = X∗

1268, X
∗

286 (55)

x′K
n = [ X∗

1268, X34 ] (56)

According to equation (31), the probabilities of series X ′∗

given the model π(P ∗, Q∗) are:

P (D′ | π(P ∗, Q∗)) = q∗1268 × p∗1268,34 = 1× 1 = 1 (57)

On the other hand, for newly-observed series shown in Fig.
9 and Fig. 10, by applying the same methodology as test
set 1 and 2, their probability of occurrence given the model
π(P ∗, Q∗) equals 0. As a result, the latter test set is expected
to be more “abnormal” than the former one since the latter
test set has a lower probability of support than the former
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10:59:30 10:59:31 10:59:32
open() fork() kill()
success success failure

Fig. 9: System call series of Virtual Machine 1 (test set 2)

10:59:30 10:59:31 10:59:32
kill() fork() open()

failure success success

Fig. 10: System call series of Virtual Machine 2 (test set 2)

one does, which means decision can be made according to
the probability of support.

In addition, the ordinal indices of the new state space
could conform to any mapping other than TABLE 1 and
TABLE 2 as long as it maintains uniqueness.

5 VALIDATION RESULTS AND DISCUSSION

As a real-world application of the multi-order Markov
chain anomaly detecting framework, we take in the classic
DARPA Intrusion Detection Evaluation Data Set [17] by
the Cyber Systems and Technology Group of MIT Lincoln
Laboratory to verify our scheme. The DARPA dataset were
collected since June 1998 when DARPA conducted a 7-week
simulation of TCP attacks (anomalies) in the background
stream of normal and regular user operations. Major results
for comparison [8][9][10] and [15] were achieved with this
data set. The rest data sets in relevant literature were either
unavailable to the public or even older than DARPA data
set. Hence, we just choose DARPA data set. In [11], authors
conducted their experiments on genomic data rather than
security data sets. In [12], data were collected from the
output of the UNIX acct auditing mechanism on a local
machine at authors lab, which were not available to the
public. In [16] published in 2006, an even earlier data set
(CERT synthetic Sendmail data collected at the University
of New Mexico (UNM) by Forrest et al. (1996)) was used. In
[19], an unpublished data set on authors own web servers
was used, which was not available for cross verification.

With the help of Basic Security Module (BSM) provided
by Oracle Solaris, system information including event time,
types of system call executed, the return value, et al. were
audited during the experiment. A typical piece of BSM audit
data can be found in Fig. 11.

5.1 Validation Results Regarding Multi-order Markov
Chain Model

For training set D, we apply algorithm 1, Training, on all
the 819472 data of system call sequence recorded on the first
week’s Friday, while data from other Fridays are used as
input for algorithm 2, Testing, respectively. A more detailed
summary of input parameters and execution could be found
in TABLE 3 and TABLE 4. It is also noteworthy that although
BSM is able to monitor up to 243 types of system calls, only
57 of them were encountered during the training stage. In
this case, treating all other unencountered system calls as a
single category would result in a simplified yet equivalent
state space comprising totally 58 states.

TABLE 3: Input Parameters of Whole Day

Parameter Value
Orders 1,2,3

Training set amount 819472
Test set amount 100000×6

Sliding window width 200
ZERO 1× 10−5

TABLE 4: Multi-order Execution Summary for Data of
Whole Day

Order 1 2 3
Number of states 58 3364 195112

Number of transitions 3364 195112 11316496
Typical runtime (training) 3s 3s 5s

Typical runtime (test) 25s 38s 56s

It is worth noting that the data inputs in TABLE 3 and
TABLE 4 covered 24 hours of the first week’s Friday. This
amount of data only takes up to 56 seconds to complete
our testing detection. If we feed a segment of data covering
only half an hour into our detection scheme for testing, it is
expected to take around 1 second to complete the testing.
The reason behind the quick response in our detection
scheme is that kernel calculations involved in the testing
phase only include looking up for the probability of the
new states and multiplying sets of probabilities together. In
other words, our scheme is able to be deployed for on-line
anomaly detection.

Calculation results of week 2 to 7 using the multi-
order Markov chain model are shown in Fig. 12, where the
horizontal axis represents the ordinal number of a subset of
testing sequence with 200 data (a sliding window over the
series with a width of 200), while the vertical axis represents
the negative logarithmic values of the probability of the
subset of test series Dtesting given the model π(P ∗, Q∗) just
trained:

−log { P[ Dtesting | π(P
∗, Q∗) ] } (58)

The blue, red and green curves stand for the first, second
and third-order model respectively.

As many figures show, for most of the time, the cal-
culation results are maintained at a relatively low level,
following the descending order from the first-order model
to higher ones. Take the third-order model in Fig. 12 (a)
for instance, the green curve usually oscillates between
20 and 80, which indicates an average one-step transition
probability of approximately 0.4 to 0.8 due to the inverse
function of negative logarithm as shown in

(10−20)
1/200

≈ 0.80 (59)

(10−80)
1/200

≈ 0.40 (60)

In view of the total 58 possible transitions, a probability of
0.4 to 0.8 would by no means be regarded as a “rare” event
and thus agrees with the universal rule of the normality
having a greater probability. However, at some point, the
curve rises sharply, reaching roughly 330, or

(10−330)
1/200

≈ 0.02 (61)

in terms of average one-step transition probability some-
where in the tail of Fig. 12 (a), which is significantly smaller
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· · ·

header,150,2,ioctl(2),,Fri Jun 05 07:49:06 1998, + 499467935 msec
path,/etc/security/audit control
attribute,100664,root,other,8388608,62781,0
argument,2,0x5401,cmd
argument,3,0xefffed7c,arg
subject,2122,root,other,root,other,257,257,0 0 pascal.eyrie.af.mil
return,failure: Inappropriate ioctl for device,-1
trailer,150

· · ·

Fig. 11: A typical segment of BSM audit data

TABLE 5: Multivariate Input Parameters

Parameter Value
Orders 1,2,3

Dimension 2
Training set amount 819472×2

Test set amount (100000×2)×6
Sliding window width 200

ZERO 1× 10−5

than any one-step transition probability encountered before.
At the same time of the “spike”, an abrupt reverse of the
originally descending order from the first to higher-order
model has also occurred. Moreover, the sixth Friday shown
in Fig. 12 (e) witnesses a much more dramatic situation in
which the third-order result soars to 1000, or an average
one-step transition probability of

(10−1000)
1/200

= 10−5 (62)

which is the exact same value as the pre-defined constant
ZERO in TABLE 3. This means that for these particular
subsets of the testing set, every single transition in them
has gone from “rare” or “low probability” to “impossible”
or “never happened before”.

According to the record by Lincoln Lab, both of the
extreme values depicted in Fig. 12 (a) and Fig. 12 (e) coincide
with a TCP attack chronologically, whereas the latter one
resulted in an unprecedented system crash on July 10th,
1998.

5.2 Validation Results Regarding Multivariate Se-
quence

Whenever a system call is executed, a certain binary value
of either SUCCESS or FAILURE is returned, which can also
be obtained from BSM as shown in Fig. 11. Along with the
types of system calls processed above, the return values
contribute to forming a kind of simplest two-dimensional
time series in a server system. Accordingly, the summary of
input parameters and execution can be found in TABLE 5
and TABLE 6.

The multivariate computing results of the same Fridays
in previous figures are shown in Fig. 13. Now the vertical
axis has a slight new meaning of the negative logarithmic
values of the probability of the subset of test series Dtesting

given the multi-variate model π[P ∗(S), Q∗(S)]:

−log { P[ Dtesting | π( P
∗(S), Q∗(S) ) ] } (63)

TABLE 6: Multivariate Execution Summary

Order 1 2 3
Number of states 116 3364 1560896

Number of transitions 13456 1560896 181063936
Typical runtime (conversion) 15s

Typical runtime (training) 3s 4s 5s
Typical runtime (test) 27s 44s 68s

instead of equation (58).
Although somewhat similar at first glance, most of these

two sets of results could be easily distinguished in many
aspects, e.g., where the univariate model in Fig. 12 (a) gives
330 to indicate anomalies, the multivariate one generates
400 in Fig. 13 (a), which further reduces the average one-
step transition probability of 0.02 in equation (61) to

(10−400)
1/200

= 0.01 (64)

The greater values from the multivariate model
π[P ∗(S), Q∗(S)] (or smaller values in terms of average
one-step transition probability) naturally lead to a more
sensitive anomaly detection considering the fact that when
intrusion or attack occurs, it is more likely to have an
extensive scale of system calls executed with the return
value of FAILURE.

Other multivariate results like the sixth Friday in Fig. 13
(e) fail to yield a better detection, as the curves in Fig. 12 (e)
are already at its theoretical maximum of 1000 (or 10−5 as
average one-step transition probability) using the univariate
approach.

5.3 Discussion

Essentially, the high-order Markov chain model π(P ∗, Q∗)
comes with far more degrees of freedom than the first-
order model π(P,Q). Therefore, after sufficient training,
π(P ∗, Q∗) is expected to extract “more” information from
the training set regarding normal transition patterns, but at
the cost of fitting some idiosyncratic noises as well. In the
application above, the high-order model π(P ∗, Q∗) acts like
a signal amplifier that increases the level of “normalness”
(or “abnormalness”) to a normal (or abnormal) transition.
It is this trait that results in the distinct inversion of rela-
tive positions from the multi-order models when anomalies
occur, and this relation can be useful in detecting anomalies
along with the conditional probabilities themselves given by
different-order models.
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(a) Friday, Week 2 (b) Friday, Week 3

(c) Friday, Week 4 (d) Friday, Week 5

(e) Friday, Week 6 (f) Friday, Week 7

Fig. 12: Calculation results from Friday, Week 3 to 7, where the horizontal axis represents the ordinal number of a sub
training sequence with 200 data, and the vertical axis represents the negative logarithmic values of support from the model
using the first Friday as the training input. The blue, red and green curves stand for the first, second and third-order model
respectively. In other words, the specific steps of generating these results are: 1). Input the data from Friday, Week 1 into
Algorithm 1, and by counting the occurrence of every possible state and transition, set up the initial and transition matrix;
2). Input the data from other Fridays into Algorithm 2, and multiply the corresponding elements of the former two matrices
to get the conditional probability of the test set given the model; 3). For convenience, the negative logarithmic value are
taken as output. Note that all following figures are presented in the same way.

However, it is still perfectly possible to come up with a
certain training set that leads to a model with completely
opposite properties, which inevitably requires a cautious

selection for the training set. After all, it is what is written in
the training data that defines the normal and the anomaly in
any application. In our study, the unique settings of a server
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(a) Friday, Week 2 (two-dimensional) (b) Friday, Week 3 (two-dimensional)

(c) Friday, Week 4 (two-dimensional) (d) Friday, Week 5 (two-dimensional)

(e) Friday, Week 6 (two-dimensional) (f) Friday, Week 7 (two-dimensional)

Fig. 13: Friday, Week 3 to 7 (two-dimensional)

system helps to relax such constraints to some extent.
To summarize, using the Training algorithm and Testing

algorithm, we provide the following rules of thumb:

1) Relations between P[Dtesting |π(P,Q)] and
P[Dnormal|π(P

∗, Q∗)] can be regarded a sign
of anomaly. For normal (or common) testing
data set Dnormal, while the first-order model
π(P,Q) will already assign relatively large value to
P[Dnormal|π(P,Q)], higher-order model π(P ∗, Q∗)
tends to give even larger value to the probability

of the corresponding higher-order transitions in
space XK . On the other hand, for abnormal (or
rare) testing data set Danomaly , while the first-order
model π(P,Q) will already assign relatively small
(or ZERO) value to P[Danomaly|π(P,Q)], higher-
order model π(P ∗, Q∗) tends to give even smaller
value to the probability of the corresponding
higher-order transitions in space XK . Putting it
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altogether, we have:

P[ Dnormal | π(P,Q) ]

≤ P[ Dnormal | π(P
∗, Q∗) ] (65)

P[ Danomaly | π(P,Q) ]

≥ P[ Danomaly | π(P
∗, Q∗) ] (66)

2) The model π[P ∗(S), Q∗(S)] that takes into account
the multi-variate sequence (with return value being
the second dimension for example) can do even
better the the multi-order model π(P ∗, Q∗) alone,
or:

P[ Danomaly | π(P
∗, Q∗) ]

≥ P{ Danomaly | π[ P
∗(S), Q∗(S) ] } (67)

6 CONCLUSIONS

In this paper, we proposed a multi-order Markov chain
based anomaly detection framework. By monitoring the
relative relations between results from the different-order
models, we provide a new effective indicator of anomalies.
In general, due to the regular and periodical behaviors of
cloud server systems, if the probability of test set given the
lower-order model exceeds that given the higher-order one,
it is implied that unusual events might have occurred in the
system and further attentions or actions would be necessary.

Besides, combining multi-dimensional inter-related se-
quences as a multivariate one into a single model would
be another feasible approach to improve the sensitivity of
detection. As shown previously, the return value series can
be a useful complement to the system call series used the
traditional practice.

In addition, with both time and space efficiency of the
Training and Testing algorithm, this approach minimizes the
possibility of becoming the source of anomalies itself and
is fully capable of online (or real-time) detection. The time
consumption of the training stage takes no more than 15
seconds for a training set as large as 1.6 million, and for
models up to the third-order combined. To further improve
efficiency, various ways such as equivalent space construc-
tion by including an artificial state, or binary representation
for sparse matrix could significantly mitigate the space
complexity problem.

Further efforts may involve the time-inhomogeneous
Markov chain, which might be able to build transition
matrix separately for any specific time period, as the time-
homogeneous assumption stated here could seem too re-
strictive for time-sensitive systems and anomalies. Model
aggregations methods may also be relevant in combining
multi-order conditional probabilities into one single value
for faster decision-making.
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