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Multiple  constraints  in  SPMs  are  considered  a  problem  that can  be solved  in  a nondeterministic  polyno-
mial  time.  In  this  paper,  we propose  a novel  approach  solving  the  data  allocations  in multiple  dimensional
constraints.  For  supporting  the  approach,  we  develop  a novel  algorithm  that  is  designed  to solve  the  data
allocations  under  multiple  constraints  in  a polynomial  time.  Our  proposed  approach  is  a  novel  scheme  of
minimizing  the  total  costs  when  executing  SPM  under  multiple  dimensional  constraints.  Our  experimen-
eywords:
eterogeneous memories
ynamic programming
ig data
ptimal approach
ata allocation

tal  evaluations  have proved  the  adaptation  of  the  proposed  model  that  could  be an  efficient  approach  of
solving  data  allocation  problems  for  SPMs.

© 2016  Elsevier  B.V.  All  rights  reserved.
igh performance

. Introduction

The dramatically booming requirements of high performance
mbedded systems have been driving multi-core system designs
or big data processing in recent years [1]. As one of the popu-
ar approaches supporting software-controlled on-chip memories,
cratch-Pad Memory (SPM) has been broadly implemented in a vari-
ty of industries while the data volume becomes large [2,3]. An
mportant benefit of using SPMs is reducing the total operating cost
y allocating data for having less hardware overhead and more data
ontrols [4]. The data accesses are controlled by a program stored
n SPMs, which can process big data by dynamic manipulations.
or gaining an efficient data processing, the critical issue of the
ost optimizations is designing an approach of achieving optimal
Please cite this article in press as: H. Zhao, et al., Cost-aware optimal da
using dynamic programming in big data, J. Comput. Sci. (2016), http:/

ata allocations. Focusing on this issue, this paper proposes a novel
pproach named Optimal Data Allocation in Heterogeneous Memo-
ies (ODAHM) model, which sights at minimizing the total costs of
PMs by organizing and controlling the data allocations.
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877-7503/© 2016 Elsevier B.V. All rights reserved.
The recent development of the heterogeneous memories in big
data mainly addressed the minimizations of the costs by balancing
different dimensional consumptions, such as energy, performance,
and time constraints [5–7]. The operating principle is that the input
data are mapped onto difference spaces in SPMs. The challeng-
ing aspect of using this mechanism is that it is hard to guarantee
real-time performance within the desired cost scope due to the
complicated allocation processes [8,9]. The performance of hetero-
geneous memories can hardly reach the full-performance unless
the efficient data allocation approach is applied. This restriction
will become even more challenging when the data size turns
into larger and the amount of the cost dimensions gets greater.
Therefore, we consider this restriction a critical issue in improv-
ing heterogeneous memories in SPM and propose our approach
to solve the data allocation problems with multiple cost dimen-
sions.

The proposed model, ODAHM, defines the main operating
procedure and manipulative principle, which deems multiple con-
straints influencing the costs while the data are allocated to
memories. We  modelize the operation of data allocations into a
ta allocations for multiple dimensional heterogeneous memories
/dx.doi.org/10.1016/j.jocs.2016.06.002

few steps, which include defining constraint dimensions, mapping
the costs for each constraint, and producing optimal data allocation
scheme according to the inputs. Implementing ODAHM can enable
an advanced data allocation strategy for SPM since more impact
factors can be involved for saving costs.
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For reaching this goal, we propose an algorithm, Optimal Multiple
imensional Data Allocation (OMDDA), which is designed to solve
-dimensional constraints data allocation problem. This algorithm
ses dynamic programming and produces the optimal solution syn-
hronously under a few constraints. The operation principle of this
lgorithm is using a deterministic approach to point at the cost
aused by the corresponding constraints, which are mapped in the
able. We  produce local optimal solutions for each constraint and
enerate a global optimal solution deriving from the outcomes of
he local optimal solutions.

Main contributions of this paper are threefold:

 We  propose a novel approach for solving the big data allocation
problem with multiple dimensional constraints for heteroge-
neous memories in SPMs, which is a NP-hard problem. This
approach supports the designs of the complex SPM systems
considering all influencing elements.

 This paper proposes a novel algorithm to solve the problem of
data allocations in SPMs, which can be applied in solving other
problems having the similar big data scenarios.

 The proposed algorithm offers a method that can produce global
optimal solutions that are executed by mapping local optimal
solutions and using dynamic programming.

The remainder of this paper follows the order below: Recent
elated work in data allocations in SPM are reviewed in Section 2.

e also present a motivational example in Section 3. Main concepts
nd the proposed model are exhibited in Section 4. In addition, main
lgorithms are given in Section 5. Moreover, we display a number
f experimental results in Section 6. Finally, conclusions are stated
n Section 7.

. Related work

We  have reviewed recent research work of data allocations
n heterogeneous memories from different perspectives in this
ection, such as reducing energy costs and increasing working effi-
iency. The increasing demands of the Internet-based applications
ave driven a higher-level of memory requirements [10–13]. First,

t has been proved that the power leakage consumption is a criti-
al issue for heterogeneous memories with large scaled transistors
ue to the different memory capacities [14,15]. This has resulted

n obstacles in applying heterogeneous memories since allocating
ata to different memories needs to assess various costs taken place
uring a few phases, such as data processing and data moves.

Recent research has been focusing on reducing costs using
ifferent techniques in various fields. Addressing the physi-
al operating environment, a proposed approach was using
emperature-aware data allocations in order to adjust the work-
oad distributions between cache and SPM [16]. The optimization

ethod was applying an energy-aware loop scheduling algorithm.
he energy could be saved when the loop scheduling was  improved
y retiming-based methods. Meanwhile, considering the operat-

ng system environment, an approach was proposed to have an
ntegrated real-time/non-real-time task execution environment for
eparately running the real-time or non-real-time nodes on OS and
inux [17,18]. This approach could reduce the total costs through

 selective execution. However, the proposed approaches above
ainly focused on software level optimizations, even though the

nergy consumptions and other costs can be managed or controlled
Please cite this article in press as: H. Zhao, et al., Cost-aware optimal da
using dynamic programming in big data, J. Comput. Sci. (2016), http:/

y a software-based solution. There is little relationship with the
anner of data allocations to memories.
Moreover, the volatile-related features of the memories provide

ptimizations with optional choices. One advantage of using
eterogeneous memories is that the volatile memories can be
 PRESS
nal Science xxx (2016) xxx–xxx

combined with non-volatile memories, which can lead to saving
energy [19]. The benefits of using non-volatile memories include
low power leakage and high density, but the unbalanced usages and
inefficient tasks scheduling [20]. A solution [21] was produced to
being an efficient scheduling method by optimizing the global data
allocations that are based on the regional data allocation optimiza-
tions. This approach can be further improved when more elements
are considered. Our proposed approach can solve the problem cov-
ering multiple elements.

Next, for further optimizations, other constraints are also con-
sidered, such as reducing latency, increasing success probabilities,
and hardware capacities. An approach [22] solving multidimen-
sional resource allocations has been proposed, which combined a
few low-complexity sub-optimal algorithms. This mechanism used
the principle of integrating a few suboptimal solutions to form an
adoptable solution. Our proposed scheme distinguishes from this
approach since we generate global optimal solutions deriving from
the local optimal solutions in different dimensions.

In addition, a genetic algorithm was  proposed for data allo-
cations of hybrid memories by configuring SRAM, MRAM,  and
Z-RAM [23]. This algorithm was  designed to enhance the perfor-
mance of SPM by dynamically allocate data to different memories
having various usage constraints. Combing this genetic algorithm
with dynamic programming, the memory costs can be reduced in
terms of power consumption and latency [5]. Despite the memory
performance can be increased, the implementations can only pro-
cess the limited constraint dimensions due to the time complexity
restrictions.

Another research direction focused on reducing costs on Phase-
Change Memory (PCM) that could consist of multiple memories
on different levels of the memory hierarchy [24,25]. The meth-
ods used in PCM are similar to heterogeneous memories in SPM.
One approach was  partitioning and allocating data to the multi-
tasking systems depending on the memory types [26,27]. However,
the solutions based on this research direction could hardly solve
the problem of the computation complexity when aiming gain an
optimal solution.

Furthermore, allocation optimizations have also been applied
in saving energy consumptions, such as energy storage within the
distributed networks [28]. Another approach of reducing the com-
plexity was using the weighted sum of the usage from multiple
channels [29]. Nonetheless, most optimizations could solve partial
of the complexity problem within the constraints.

In summary, our approach is different from most prior research
achievements. The proposed approach is a scheme of producing
optimal solutions for multiple dimensional heterogeneous mem-
ories. We  further expand the condition constraint from a limited
amount to multiple dimensions.

3. Motivational example

In this section, we give a simple example of using our proposed
approach to process data allocations to heterogeneous memories.
In this example, assume that there are 4 ZRAM and 2 SRAM avail-
able. Main memory is always available for data. There are 7 input
data that required different read and write accesses. The output is
a data allocation plan that requires the minimum total cost. Table 1
represents the cost differences of data allocations to each memory.

Table 2 displays the number of the memory accesses, including
Read and Write. 7 input data are A, B, C, D, E, F, and G. For instance,
ta allocations for multiple dimensional heterogeneous memories
/dx.doi.org/10.1016/j.jocs.2016.06.002

data A require 5 reads and 2 writes, according to the table. Our
example’s initial status is to allocate A → Main, B → SRAM,  C → Main,
D → ZRAM,  E → Main, F → Main, and G → Main.

Based on the conditions given by Tables 1 and 2, we map  the
costs of data allocations to heterogeneous memories in Table 3. For
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Table  1
Cost differences for data allocations to heterogeneous memories.

Operation SRAM ZRAM Main

Read 2 3 75
Write 2 7 75

Move
SRAM 0 10 72
Z-RAM 6 0 72
Main 70 76 0

Table 2
The number of the memory accesses.

Data Read Writes

A 5 2
B  10 8
C  8 5
D  4 4
E  2 10
F  3 15
G  15 4

Table 3
Mapping the costs for heterogeneous memories.

Data SRAM ZRAM Main

A 84 105 525
B  36 96 1422
C  96 135 975
D  22 40 672
E  94 152 900
F  106 190 1350
G  108 149 1425

Table 4
Allocation cost for data A.

525 (Main) 105 (ZRAM)
84 (SRAM)

Table 5
A partial D Table.

A 0 1 2 3 4 ZRAM
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A → Main, B → SRAM, C → ZRAM, D → ZRAM, E → ZRAM, F → SRAM,
G → ZRAM.

The detailed mechanism of our approach is given in Sections 4
and 5.

Table 6
D Table. The optimal data allocations are bolded.

0 1 2 3 4 ZRAM

A
SRAM 0 525 105

1 84
2

B
SRAM 0 1947 621 201

1 561 141
2 120

C
SRAM 0 2292 1596 756 336

1 1536 696 276
2 657 237

D
SRAM 0 3594 2268 1428 796 376

1 2208 1368 736 316
2 1329 697 277

E
SRAM 0 4494 3168 2328 1580 948

1 3108 2268 1520 888 468
2 2229 1462 830 410

F
SRAM 0 5844 4518 3358 2518 1770

1  4458 3274 2434 1686 1054
2 3214 2374 1626 994 574
SRAM 0 525 105
1  84
2

xample, as shown in the table, data A costs 84 when it is allocated
o SRAM, switched from Main memory. We  are going to use Table 3
o calculate the total cost after the allocations. For obtaining the
nal optimal data allocation plan, we will produce a D Table show-

ng the optimal data allocation plan. The generation process is given
s follows, which consists of a few steps.

First, we only consider one input data A. Deriving from Table 3,
e produce a four-cell grid that is shown Table 4. As shown in this

rid, we mark the memory to the corresponding cost. Meanwhile,
he D Table generation starts from adding Table 4 into the D Table.
able 5 represents the manner of the data insertions in D Table.
s displayed in the table, A refers to the new added data A. In the
rst row, 0–4 means the availability of ZRAM. Correspondingly, 0–2
eans the availability of SRAM in the second column. For instance,

25 is associated to (0, 0), which means neither ZRAM nor SRAM is
vailable for data A. The cost of data A is 525 in this situation, which
s allocated to Main memory.

Next, we consider adding data B to continue generating D Table.
Please cite this article in press as: H. Zhao, et al., Cost-aware optimal da
using dynamic programming in big data, J. Comput. Sci. (2016), http:/

ig. 1 represents the process of adding Data B into D Table. We  mark
he table showing the partial Table D with data A cost as DAC, table
howing data B costs as DBC, and partial D Table for data A and B
s DB. Since the maximum cases for each cell is 3, we  alternative
Fig. 1. Generating partial D Table for data A and B deriving from Tables 3 and 5.

the allocation plan with the lowest cost in each cell. For calculating
the values, we use the memory availability values as coordinates.
For example, DB(1, 1) refers to 141 in DB;  DBC(1, 0) refers to
96 (ZRAM) in DBC. Therefore, the minimum cost for each cell in
DB, DB(i, j) can be gained by min〈[DBC(0, 0) + DAC(i, j)], [DBC(0,
1), DAC(i, j − 1)], [DBC(1, 0), DAC(i − 1, j)]〉. For instance, DB(1,
1) = min〈[DBC(0, 0) + DAC(1, 1)], [DBC(0, 1) + DAC(1, 0)], [DBC(1,
0) + DAC(0, 1)]〉  = min〈[1422 + 0], [36 + 105], [96 + 84]〉 = min〈1422,
141, 180〉 = 141.

Moreover, we  add all other data by using the same method. A
completed D Table is shown in Table 6. A, B, C, D, E, F, and G refer to
the order of adding data. We  bold the number that is correspond-
ing to the optimal solution in this example. According to the table,
the lowest data allocation cost is 1143 after data G are added to the
table. Based on this finding, we move backward obtain all data allo-
cations, which are 1143 → 994 → 888 → 736 → 696 → 561 → 525.
We can gain the data allocation plan for each data from the calcula-
tion method mentioned above. Therefore, the data allocation plan is
ta allocations for multiple dimensional heterogeneous memories
/dx.doi.org/10.1016/j.jocs.2016.06.002

G
SRAM 0 7269 5943 4667 3507 2667

1 5883 4607 3423 2583 1835
2 4566 3363 2523 1775 1143
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Fig. 2. Operating process 

. Concepts and the proposed model

We  illustrate our proposed model by defining the main target
roblem and concepts used in the model.

.1. System definition and problem statement

We  assume that the data partition process of the input data
ompletes before the data allocations. For generating the alloca-
ion plan, the target cost for saving purpose is determined and the
nformation is available, such as computing cost per Read or per

rite. The research problem is defined by the following Definition
.

efinition 1. [Minimizing cost of data allocation on heteroge-
eous memories (MC-DAHM) problem] Inputs include a chain of
ata, initial data locations, the number of available memories for
ach type, the number of the memory access for each data, the cost
f each data for Read, Write, and Move. The output is a data allo-
ation plan. The research problem is finding out the data allocation
lan that can minimize the total cost.

In this problem, inputs include the number of data, initial data
ocations, the number of memory types, the number of available

emories for each type, the number of memory accesses for each
ata, the cost of data operations, including Read, Write, and Move.
ur aim is to produce a data allocation plan that allocate the input
ata to the available memories by using the minimum total cost.
he total cost calculation method is given in Eq. (1).

osttotal =
n∑

i=1

(Di × RCj + Di × WCj + Di × MVj) (1)

Assume that there are n input data D. As shown in Eq. (1),
osttotal refers to the total cost of data allocations. Di× RCj means
he Read cost for a certain data and RCj is the Read cost for data Di
ach time. Di× WCj means the Write cost of each data and WCj is
he Write cost of Di at each time. Similarly, Di× MVj is the Move
ost and MVj is the Move cost of Di at each time. The total cost is
umming up all n input data’ costs.

.2. Optimal data allocation in heterogeneous memories
ODAHM)

In our proposed model, there are mainly three steps for gen-
rating the data allocation plan. First, when the data were loaded,
Please cite this article in press as: H. Zhao, et al., Cost-aware optimal da
using dynamic programming in big data, J. Comput. Sci. (2016), http:/

he cost of each data at each memory will be calculated. Three cost
perations will be calculated, including Read, Write, and Move. The
esults of the costs will be mapped into a table. A sample is given in
ection 3 as Table 3. Second, a D Table will be generated for gaining
he optimal data allocation plans by using dynamic programming.
proposed ODAHM model.

A sample of D Table is given in Table 6. The creation process of D
Table is the critical component of our model. We  give the mathe-
matical formulations about D Table generations in the late part of
this section and describe computing algorithm in Section 5. Finally,
we find out the optimal data allocation plan once the D Table is
created.

Fig. 2 represents the operating process of the proposed ODAHM
model that shows three main steps. As shown in the figure, input
requirements include the information about both input data and
memories, which will be used for mapping each data cost at each
memory. At the phase of D Table generation, we create the table
by adding data in a succession manner. Assume that there are m
types of memories available. We  define one type of the memory
as one dimension. The definition of N-Dimensional Heterogeneous
Memories is given by Definition 2.

Definition 2. [N-dimensional heterogeneous memories] ∃ n types
of the memory available for alternatives, we define “n” as the
number of dimensions and the available memory set is called
N-Dimensional heterogeneous Memories. Each memory type can
have different number of memories.

Once the D Table is accomplished, we can find the data alloca-
tion paths to determine the allocation plan. The detailed method
description is given in Section 5.

5. Algorithms

In this section, we propose the algorithm to generate the opti-
mal  data allocation using dynamic programming. We  define a few
definitions used in our algorithm, including B Table defined by
Definition 3 and D Table defined by Definition 4.

Definition 3. [B Table] We  use a multiple-dimensional array to
describe a table that stores the cost of each data at each memory.
Inputs include each data’s cost when it is assigned to a memory.
The output will be a multiple-dimensional array. ∃ j types of mem-
ory, {Mj}, and each Mj has nj memories available. The mathematical
expression is BTab[i]〈(M1, nb1), (M2, nb2), . . .,  (Mj, nbj)〉, which rep-
resents the cost when datai use j types of memory and the number
of each memory type.

Definition 4. [D Table] We  use a multiple-dimensional array to
describe a table that shows the total cost of data allocations by
storing all task assignment plans. Input is the B Table. The output
will be a multiple-dimensional array storing all task assignments
ta allocations for multiple dimensional heterogeneous memories
/dx.doi.org/10.1016/j.jocs.2016.06.002

as well as their costs. ∃ j types of memory, {Mj}, and each Mj has nj
memories available. The mathematical expression is DTab[d]〈(M1,
nd1), (M2, nd2), . . .,  (Mj, ndj)〉, which represents the cost of all d data
when using j types of memory. The tuple shows the assignment
plan.
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Fig. 3. Comparisons of costs under Setting 1.

Fig. 5 shows the comparisons among Random, Greedy, DAHS
and OMDDA algorithms under setting 3. Our proposed algorithm
had an advantage in saving costs, according to the display of the
ARTICLEG Model
OCS-513; No. of Pages 7
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lgorithm 1. Optimal multiple dimensional data allocation
OMDDA) algorithm.
equire: The B Table BTab
nsure: The optimal data allocation
: input the B Table
:  DTab[0] ← BTab[0]
: FOR ∀ rest cell in DTab,
:  /* DTab[i]〈(M1, nd1), (M2, nd2), . . .,  (Mj , ndj)〉 */
:  minCost ← ∞
: FOR ∀ cell in BTab[i],
:  /* BTab[i]〈(M1, nb1), (M2, nb2), . . .,  (Mj , nbj)〉 */
:  IF ∃ DTab[i-1]〈(M1, nd1 − nb1), (M2, nd2 − nb2), . . .,  (Mj ,

ndj − nbj)〉
: sum ← BTab[i]〈(M1, nb1), (M2, nb2), . . .,  (Mj ,

nbj)〉 + DTab[i-1]〈(M1, nd1 − nb1), (M2, nd2 − nb2), . . .,  (Mj ,
ndj − nbj)〉

0: IF sum<minCost
1: minCost ← sum
2: update the data allocation plan
3:  ENDIF
4: ENDIF
5: ENDFOR
6: ENDFOR
7: RETURN the optimal data allocation by searching the D Table

according to the memory condition.

Algorithm 1 shows our proposed algorithm and the main phases
f our algorithm include:

 Input B Table.
 Start generating D Table. We  copy BTab[0] to DTab[0] to produce
the first partial D Table, which represents add data[0] to D Table.

 We  add data[1] to the D Table by calculating the data allocation
costs based on the partial D Table generated by the last Step 5
and partial B Table BTab[1].

 Add all data by applying the same method used in Step 5 until
the D Table is generated.

 Find the optimal data allocation by searching the lowest cost
in D Table according to the memory condition. Output the task
assignment plan.

. Experiments and the results

The n-dimensional dynamic programming algorithm, OMDDA,
s designed to find the optimal data allocation for multiple dimen-
ional heterogeneous memories. Our experiments accomplished
omparisons among Random algorithm, Greedy algorithm, DAHS
lgorithm [14], and our proposed algorithm. The comparisons
ocused on comparing four algorithms’ data allocation costs and
ime consumptions. We  implemented our experiments on a Host
hat ran Windows 8.1 64 bit OS. The main hardware configuration
f the Host was: Intel Core i5-4210U CPU, 8.0 GB RAM.

We configured three experimental settings for assessing the
erformance of the proposed algorithm. There were three mainly
ariables in our experiments: the number of the data kind, the data
ize of every kind data, and the number of the available memories.

Three experimental settings are:

Setting 1: We  configured 7 kinds of data, each kinds data has 1 M
size, 2 M available SRAM and 4 M available ZRAM.
Setting 2: We  configured 8 kinds of data, each kinds data has 1 G
size, 1 G available SRAM and 5G available ZRAM.
Setting 3: We  configured 10 kinds of data, each kinds data has 1 G
size, 1 G available SRAM and 6 G available ZRAM.
Please cite this article in press as: H. Zhao, et al., Cost-aware optimal da
using dynamic programming in big data, J. Comput. Sci. (2016), http:/

.1. Experimental results

Fig. 3 shows the comparison among Random algorithm, Greedy
lgorithm, DAHS algorithm and OMDDA algorithm under setting 1.
s shown in the figure, our proposed algorithm could accomplish
Fig. 4. Comparisons of costs under Setting 2.

all tasks with requiring the lowest cost. The Random algorithm
demanded the largest cost because there were great chances to
allocate data to those memories inquiring bigger costs. Greedy algo-
rithm usually needed more costs than DAHS and OMDDA but there
were some chances for Greedy to produce optimal solutions. The
DAHS and OMDDA algorithm have the same solution since they
both are optimal data allocation algorithm.

Moreover, Fig. 4 shows the comparison among Random algo-
rithm, Greedy algorithm, DAHS algorithm and OMDDA algorithm
under setting 2. Our proposed scheme had a better performance
than both Random and Greedy algorithms under this setting.
ta allocations for multiple dimensional heterogeneous memories
/dx.doi.org/10.1016/j.jocs.2016.06.002

Fig. 5. Comparisons of costs under Setting 3.
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Fig. 6. Comparisons of the saved costs showing the difference between OMDDA and
Random or Greedy algorithms.
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ig. 7. Comparisons of execution time among Random, Greedy, DAHS and OMDDA
lgorithms.

gure. The vertical axis showed the cost levels for each algorithm.
he advantage was obvious under this setting.

Fig. 6 shows how much cost OMDDA had saved comparing with
andom and Greedy algorithms under each setting. As shown in
ig. 6, we could obtain the finding that the data size had a nearly
ositive relationship with the saved cost. It proved that our pro-
osed scheme was suitable for the data processing in the big data
ontext. The volume of the saved cost will become greater while
he data volume becomes larger.

Fig. 7 shows the comparisons of execution time among Ran-
om algorithm, Greedy algorithm, DAHS algorithm and OMDDA
lgorithm. As shown in Fig. 7, we can see our proposed algorithm
as less execution time than DAHS even through they have same
ptimal solution.

In summary, our experiments prove that the proposed algo-
ithm, OMDDA performed better than Random algorithm and
reedy algorithm under all configured settings. Compare to DAHS,
MDDA algorithm has less consumption time to generate the opti-
al  solution. Our findings also showed that the OMDDA had a better

erformance when the data volume is in a bigger size.

. Conclusions

This paper addressed the issues of using heterogeneous memo-
ies to enable high performance big data processing and proposes
Please cite this article in press as: H. Zhao, et al., Cost-aware optimal da
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n optimal solution that could generate the data allocation plans
ith the lowest cost. The proposed model was named as Opti-
al  Data Allocation in Heterogeneous Memories (ODAHM) and

he main algorithm in the model was Optimal Multiple Dimen-
ional Data Allocation (OMDDA) algorithm. We  had implemented
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experimental evaluations to examine our proposed model’s per-
formance and the collected results showed that our model had a
great advantage in saving cost due to the optimal data allocations.

References

[1] N. Min-Allah, H. Hussain, S. Khan, A. Zomaya, Power efficient rate monotonic
scheduling for multi-core systems, J. Parallel Distrib. Comput. 72 (1) (2012)
48–57.

[2] Y. Guo, Q. Zhuge, J. Hu, J. Yi, M.  Qiu, E. Sha, Data placement and duplication for
embedded multicore systems with scratch pad memory, IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 32 (6) (2013) 809–817.

[3] M.  Dorojevets, Z. Chen, C. Ayala, A. Kasperek, Towards 32-bit energy-efficient
superconductor RQL processors: the cell-level design and analysis of key
processing and on-chip storage units, IEEE Trans. Appl. Supercond. 25 (3)
(2015) 1–8.

[4] G. Rodríguez, J. Touriño, M.  Kandemir, Volatile STT-RAM scratchpad design
and data allocation for low energy, ACM Trans. Arch. Code Optim. 11 (4)
(2014) 38.

[5] M.  Qiu, Z. Chen, M.  Liu, Low-power low-latency data allocation for hybrid
scratch-pad memory, IEEE Embed. Syst. Lett. 6 (2014) 69–72.

[6] D. Chang, C. Lin, Y. Chien, C. Lin, A. Su, C. Young, CASA: contention-aware
scratchpad memory allocation for online hybrid on-chip memory
management, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33 (12)
(2014) 1806–1817.

[7] M.  Sabry, D. Atienza, F. Catthoor, OCEAN: an optimized HW/SW reliability
mitigation approach for scratchpad memories in real-time SoCs, ACM Trans.
Embed. Comput. Syst. 13 (4s) (2014) 138.

[8] B. Gaster, D. Hower, L. Howes, HRF-relaxed: adapting HRF to the complexities
of industrial heterogeneous memory models, ACM Trans. Arch. Code Optim.
12  (1) (2015) 7.

[9] H. Waidyasooriya, Y. Ohbayashi, M.  Hariyama, M.  Kameyama, Memory
allocation exploiting temporal locality for reducing data-transfer bottlenecks
in  heterogeneous multicore processors, IEEE Trans. Circuits Syst. Video
Technol. 21 (10) (2011) 1453–1466.

10] D. Kliazovich, P. Bouvry, S. Khan, GreenCloud: a packet-level simulator of
energy-aware cloud computing data centers, J. Supercomput. 62 (3) (2012)
1263–1283.

11] N. Fernando, S. Loke, W.  Rahayu, Mobile cloud computing: a survey, Future
Gener. Comput. Syst. 29 (1) (2013) 84–106.

12] K. Gai, S. Li, Towards cloud computing: a literature review on cloud
computing and its development trends., in: The 4th IEEE International
Conference on Multimedia Information Networking and Security, IEEE,
Nanjing, China, 2012, pp. 142–146.

13] K. Gai, M.  Qiu, H. Zhao, L. Tao, Z. Zong, Dynamic energy-aware cloudlet-based
mobile cloud computing model for green computing, J. Netw. Comput. Appl.
59  (2015) 46–54.

14] J. Hu, C. Xue, Q. Zhuge, W.  Tseng, E.H. Sha, Data allocation optimization for
hybrid scratch pad memory with SRAM and nonvolatile memory, IEEE Trans.
Very Large Scale Integr. Syst. 21 (6) (2013) 1094–1102.

15] K. Gai, Z. Du, M.  Qiu, H. Zhao, Efficiency-aware workload optimizations of
heterogeneous cloud computing for capacity planning in financial industry,
in: The IEEE 2nd International Conference on Cyber Security and Cloud
Computing, IEEE, New York, NY, USA, 2015, pp. 1–6.

16] Z. Jia, Y. Li, Y. Wang, M.  Wang, Z. Shao, Temperature-aware data allocation for
embedded systems with cache and scratchpad memory, ACM Trans. Embed.
Comput. Syst. 14 (2) (2015) 30.

17] H. Wei, Z. Shao, Z. Huang, R. Chen, Y. Guan, J. Tan, Z. Shao, RT-ROS: a real-time
ROS architecture on multi-core processors, Future Gener. Comput. Syst.
(2015).

18] J. Li, M.  Qiu, Z. Ming, G. Quan, X. Qin, Z. Gu, Online optimization for scheduling
preemptable tasks on IaaS cloud systems, J. Parallel Distrib. Comput. 72 (5)
(2012) 666–677.

19] M.  Qiu, L. Chen, Y. Zhu, J. Hu, X. Qin, Online data allocation for hybrid
memories on embedded tele-health systems, in: 2014 IEEE International
Conference on High Performance Computing and Communications, 2014 IEEE
6th  Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on
Embedded Software and Syst, IEEE, 2014, pp. 574–579.

20] J. Hu, Q. Zhuge, C. Xue, W.  Tseng, E.H. Sha, Management and optimization for
nonvolatile memory-based hybrid scratchpad memory on multicore
embedded processors, ACM Trans. Embed. Comput. Syst. 13 (4) (2014) 79.

21] Q. Zhuge, Y. Guo, J. Hu, W.  Tseng, C. Xue, E.H. Sha, Minimizing access cost for
multiple types of memory units in embedded systems through data allocation
and scheduling, IEEE Trans. Signal Process. 60 (6) (2012) 3253–3263.

22] B. Han, M.  Peng, Z. Zhao, W.  Wang, A multidimensional resource-allocation
optimization algorithm for the network-coding-based multiple-access relay
channels in OFDM systems, IEEE Trans. Veh. Technol. 62 (8) (2013)
4069–4078.
ta allocations for multiple dimensional heterogeneous memories
/dx.doi.org/10.1016/j.jocs.2016.06.002

23] M.  Qiu, Z. Chen, J. Niu, G. Quan, X. Qin, L. Yang, Data allocation for hybrid
memory with genetic algorithm, IEEE Trans. Emerg. Top. Comput. (2015)
1–11.

24] M.  Qiu, M.  Zhong, J. Li, K. Gai, Z. Zong, Phase-change memory optimization for
green cloud with genetic algorithm, IEEE Trans. Comput. 64 (12) (2015)
3528–3540.



 INJ

utation

[

[

[

[

[

h
s
r
r
p
1
a
S
b
a
C
I
h
C
2
r
o
2
U
a

research interests include cloud computing, cyber security, combinatorial optimiza-
tion, business process modeling, enterprise architecture, and Internet computing.
ARTICLEG Model
OCS-513; No. of Pages 7

H. Zhao et al. / Journal of Comp

25] Z. Wang, Z. Gu, Z. Shao, Optimizated allocation of data variables to
PCM/DRAM-based hybrid main memory for real-time embedded systems,
IEEE  Embed. Syst. Lett. 6 (3) (2014) 61–64.

26] P. Panda, N. Dutt, A. Nicolau, On-chip vs. off-chip memory: the data
partitioning problem in embedded processor-based systems, ACM Trans. Des.
Autom. Electron. Syst. (TODAES) 5 (3) (2000) 682–704.

27] Y. Li, W.  Dai, Z. Ming, M.  Qiu, Privacy protection for preventing data
over-collection in smart city, IEEE Trans. Comput. (2015) 1.

28] Y. Zheng, Z. Dong, F. Luo, K. Meng, J. Qiu, K. Wong, Optimal allocation of
energy storage system for risk mitigation of DISCOs with high renewable
penetrations, IEEE Trans. Power Syst. 29 (1) (2014) 212–220.

29] R. Fan, H. Jiang, Q. Guo, Z. Zhang, Joint optimal cooperative sensing and
resource allocation in multichannel cognitive radio networks, IEEE Trans. Veh.
Technol. 60 (2) (2011) 722–729.

Hui Zhao earned the B.E. and M.S. degrees from Xi’an
Technology University, Shanxi and Henan University,
Henan, China, in 2000 and 2008, respectively. He is a Ph.D.
student at the Seidenberg School of Computer Science and
Information Systems of Pace University. He is currently
an associate professor in the Software School of Henan
University.

Meikang Qiu earned BE and ME degrees from Shanghai
Jiao Tong University, China in 1992 and 1998, respec-
tively. He earned MS  and PhD degrees in Computer Science
from University of Texas at Dallas in 2003 and 2007,
respectively. Currently, he is an associate professor of
computer science at Pace University and adjunct profes-
sor at Columbia University. He is serving as a Chair of IEEE
STC (Special Technical Community) in Smart Computing
at  IEEE Computer Society. He had worked at Chinese Heli-
copter R&D Institute, IBM, etc., for nine years. Currently,
he is an IEEE senior member and ACM senior member.
His research interests include cloud computing, big data
storage and security, embedded systems, cyber security,

ybrid memory, heterogeneous systems, mobile and sensor networks, operating
ystems, optimization, intelligent systems, cyber-physical systems, etc. A lot of novel
esults have been produced, and most of them have already been reported to the
esearch community through high-quality journal and conference papers. He has
ublished 4 books, 320 peer-reviewed journal and conference papers (including
50 journal articles, 170 conference papers, 40+ IEEE/ACM Transactions papers),
nd 3 patents. He has won ACM Transactions on Design Automation of Electrical
ystems (TODAES) 2011 Best Paper Award. His paper about cloud computing has
een  published in JPDC (Journal of Parallel and Distributed Computing, Elsevier)
nd ranked No. 1 in Top Hottest 25 Papers of JPDC 2012. He has won another 6
onference Best Paper Award (IEEE/ACM ICESS’12, IEEE GreenCom’10, IEEE EUC’10,

EEE CSE’09, IEEE CSCloud’15, IEEE BigDataSecurity’15) in recent years. Currently
e  is an associate editor of IEEE Transactions on Computers and IEEE Transactions on
loud Computing. He is the General Chair of IEEE HPCC/ICESS/CSS 2015, IEEE CSCloud
Please cite this article in press as: H. Zhao, et al., Cost-aware optimal da
using dynamic programming in big data, J. Comput. Sci. (2016), http:/

015 (Cyber Security and Cloud Computing), and NSS’15 (Network and System Secu-
ity), Steering Committee Chair of IEEE BigData Security 2015, and Program Chair
f  IEEE SOSE/MobileCloud/BigData 2015. He won Navy Summer Faculty Award in
012 and Air Force Summer Faculty Award in 2009. His research is supported by the
S government, such as National Science Foundation (NSF), the Air Force, the Navy,
nd  companies such as Nokia, TCL, and Cavium.
 PRESS
al Science xxx (2016) xxx–xxx 7

Min  Chen (minchen2012@hust.edu.cn) [SM09] Min  Chen
is a professor in School of Computer Science and Tech-
nology at Huazhong University of Science and Technology
(HUST). He is Chair of IEEE Computer Society (CS) Spe-
cial Technical Communities (STC) on Big Data. He was
an assistant professor in School of Computer Science
and Engineering at Seoul National University (SNU) from
September 2009 to February 2012. He worked as a Post-
Doctoral Fellow in Department of Electrical and Computer
Engineering at University of British Columbia (UBC) for
three years. Before joining UBC, he was a Post-Doctoral
Fellow at SNU for one and half years. He received Best
Paper Award from IEEE ICC 2012, and Best Paper Runner-

up  Award from QShine 2008. He serves as editor or associate editor for Information
Sciences, Wireless Communications and Mobile Computing, IET Communications,
IET Networks, Wiley I. J. of Security and Communication Networks, Journal of Inter-
net  Technology, KSII Trans. Internet and Information Systems, International Journal
of  Sensor Networks. He is managing editor for IJAACS and IJART. He is a Guest
Editor for IEEE Network, IEEE Wireless Communications Magazine, etc. He is Co-
Chair of IEEE ICC 2012-Communications Theory Symposium, and Co-Chair of IEEE
ICC  2013-Wireless Networks Symposium. He is General Co-Chair for the 12th IEEE
International Conference on Computer and Information Technology (IEEE CIT-2012)
and Mobimedia 2015. He is General Vice Chair for Tridentcom 2014. He is Keynote
Speaker for CyberC 2012, Mobiquitous 2012 and Cloudcomp 2015. He has more than
260 paper publications, including 120+ SCI papers, 50+ IEEE Trans./Journal papers,
6  ISI highly cited papers and 1 hot paper. He has published two books: OPNET IoT
Simulation (2015) and Big Data Inspiration (2015) with HUST Press, and a book on
big data: Big Data Related Technologies (2014) with Springer Series in Computer
Science. His Google Scholars Citations reached 6015+ with an h-index of 37. His top
paper was cited 715+ times, while his top book was cited 420 times as of August 2015.
He is an IEEE Senior Member since 2009. His research focuses on Cyber Physical Sys-
tems, IoT Sensing, 5G Networks, Mobile Cloud Computing, SDN, Healthcare Big Data,
Medica Cloud Privacy and Security, Body Area Networks, Emotion Communications
and Robotics, etc.

Keke Gai holds degrees from Nanjing University of Sci-
ence and Technology (BEng), the University of British
Columbia (MET) and Lawrence Technological University
(MBA and MS). He is currently pursuing his PhD at Depart-
ment of Computer Science at Pace University, New York,
USA. Keke Gai has published more than 60 peer-reviewed
journals or conference papers, 20+ journal papers (includ-
ing ACM/IEEE Transactions), and 40+ conference papers.
He has been granted three IEEE Best Paper Awards by
IEEE conferences (IEEE SSC’16, IEEE CSCloud’15, IEEE Big-
DataSecurity’15) in recent years. His  paper about cloud
computing has been ranked as the “Most Downloaded
Articles” of Journal of Network and Computer Applications

(JNCA). He is involved in a number of professional/academic associations, including
ACM and IEEE. Currently, he is serving as a Secretary/Treasurer of IEEE STC (Spe-
cial  Technical Community) in Smart Computing at IEEE Computer Society. He has
worked for a few Fortune 500 enterprises, including SINOPEC and GE Capital. His
ta allocations for multiple dimensional heterogeneous memories
/dx.doi.org/10.1016/j.jocs.2016.06.002

He also served as a publicity chair/financial chair/web chair/TPC member in an
amount of academic conferences, such as IEEE SmartCloud’16, SmartCom’16, IEEE
CSCloud/SSC’15 ’16, IEEE DataSec/HPSC/IDS’15 ’16, IEEE HPCC/ICESS/CSS ’15, and
CONISAR’13.


