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Abstract—Recognizing and retrieving multimedia content with
movie/TV-series actors, especially querying actor-specific videos
in large scale video dataset has attracted much attention in both
video processing and computer vision research field. However,
many existing methods have low efficiency both in training
and testing processes and also less satisfactory performance.
Considering these challenges, in this paper, we propose an
efficient cloud-based actor identification approach with Batch-
Orthogonal Local-Sensitive Hashing (BOLSH) and Multi-Task
Joint Sparse Representation Classification (MTJSRC). Our ap-
proach, is featured by: (i) videos from movie/TV-series are seg-
mented into shots with the cloud-based shot boundary detection;
(ii) while faces in each shot are detected and tracked, the cloud-
based BOLSH is then implemented on these faces for feature
description; (iii) the sparse representation is then adopted for
actor identification in each shot; (iv) finally, a simple application,
actor-specific shots retrieval is realized to verify our approach.
We conduct extensive experiments and empirical evaluations on
a large scale dataset, to demonstrate the satisfying performance
of our approach considering both accuracy and efficiency.

Index Terms—Actor Identification, Cloud Computing, Shot
Boundary Detection, Locality-Sensitive Hashing, Sparse Repre-
sentation.

I. INTRODUCTION

With rapid advances in digital technologies, there has been
profound development in videos, especially the feature movies
and TV series. Moreover, the new generation cellular networks
with high transmission rate and energy efficiency provide a
new approach for multimedia wireless communications, which

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.
Corresponding author: Chi Harold Liu.

G. Gao is with the School of Software, Beijing Institute of Technology,
Beijing 10081, China. E-mail: guangyugao@bit.edu.cn

C. H. Liu is with the School of Software, Beijing Institute of Technology,
Beijing 10081, China, and also with the Department of Computer Informa-
tion and Security, Sejong University, Seoul 143-747, South Korea. E-mail:
chiliu@bit.edu.cn

M. Chen is with the School of Computer Science and Technology,
Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan
430074, China. E-mail: minchen2012@hust.edu.cn

G. Song is with the School of Computer Science and Engineering, The
University of Aizu, Tsuruga, Ikki-machi, Aizu-Wakamatsu City, Fukushima
965-8580, Japan. E-mail: sguo@u-aizu.ac.jp

K. K. Leung is with the EEE and Computing Departments, Imperial
College, London SW7 2BT, UK. E-mail: kin.leung@imperial.ac.uk

This work was supported by the National Natural Science Foundation of
China under Grant No. 61572220, No. 61401023 and No. 61300179. This
work was also supported by the Fundamental Research Funds for the Central
Universities under HUST: 2016 YXMSO070.

combine the digital technologies and wireless communications
to satisfy the requirement of quality of service [1]. In order
to feasibly browse and retrieval these videos, it is very crucial
and urgent to provide efficient and effective techniques for
video analyzing and understanding. Firstly, there are several
works focused on video analyzing in surveillance video, i.e.
Ma et al. [2] built an efficient system for robust and fast
people counting under occlusion through multiple cameras.
Meanwhile, automatic actor identification is one of the most
important techniques for video analyzing in broadcast videos,
since actor identification is to label actor in videos with
their corresponding names. In a movie/TV series, the actors
are often the most important contents to be indexed, thus
actor identification becomes a critical step in video semantic
analysis (Video always refers to movie and TV series in
this paper unless otherwise specified.), i.e., semantic movie
index and retrieval, summarization. As mentioned in [3], [4],
recently, multimedia content providers have started to offer
information on cast and characters for TV series and movies
during playback.

Actually, the face recognition is the most common way used
for actor identification. Sang et al. [5] proposed the problem
of faceted subtopic retrieval, which focus on more complex
queries concerning political and social events or issues. Mean-
while, some of the researchers proposed to share aligned faces
in a carefully crafted benchmark face recognition dataset such
as the Labeled Face in the Wild'. By automatically detecting
faces throughout the video, extracting facial features and then
using these features in a supervised or unsupervised clustering
process, actors can be identified and labeled. Therefore, the
actor identification is generally divided into several steps:
video segmentation, face detection and tracking, face and actor
recognition, and actor-specific retrieval.

As has been noted in [6], although it is very intuitive to
humans, automatic actor identification is still tremendously
challenging due to: 1) the lack and ambiguity of available
annotations; 2) many other factors, like pose, light and ex-
pression, etc., influent the way a face appeared in a frame;
and 3)when there are many uncontrolled data quality factors,
such as low resolution, occlusion, nonrigid deformation, large
motion and complex background, which make the results of
face detection and tracking unreliable; 4) the efficiency is
always a concern for video processing and analysis, and it is

Uhttp://vis-www.cs.umass.edu/lfw/index. html
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still a unresolved problem that how to balance the efficiency
and accuracy of actor identification in videos.

In order to deal with these challenges, in this work, we
present a novel cloud-based actor identification approach with
Batch-Orthogonal Local-Sensitive Hashing (BOLSH) [7] and
sparse representation. Firstly, since there are full of various
images as well as video clips in the Internet for actors, we
propose to do a matching between the faces detected from
the video and the exemplar faces in the gallery set, which
have been searched from the Web. For the second and third
challenge, when each face is detected and tracked, we use the
BOLSH method to provide multi batch features, and then we
used the Multi-Task Joint Sparse Representation and Classifi-
cation (MTJSRC) [8] to accurately recognize face tracks. Since
the batches is the key concept in our approach, we renamed the
used sparse representation algorithm as Multi-Batches Joint
Sparse Representation and Classification (MBJSRC) in this
paper. And also, the kernel view of that even achieved more
robust performance.

In order to deal with the fourth challenge, we introduce the
Apache Spark? based cloud computing both for pre-processing
of video segmentation and BOLSH hashing on massive face
images. The cloud-based way can offer high efficiency but
also maintain satisfactory identification performance. Finally,
based on the results of actor identification, face tracks in each
shot will be assigned with actor names, and further application
of actor-specific shots retrieval is also presented.

All in all, compared with previous studies on such topic,
the main contributions of this paper include:

e The cloud based Spark framework is introduced to
accelerate the shot boundary detection by distributing
processes on all pixels into a parallel environment.

o The BOLSH method is used for feature description which
not only reduce the feature dimension but also maintain
the similarity between instances.

o With BOLSH, we need to hash thousands or more faces
into hash values, which will result in very low efficiency.
However, the batch concept in BOLSH make it easy to do
hashing in parallel with the cloud computing ideas, and
the Spark framework is used to assign the hash processes
into different virtual machines.

o The MTJSRC algorithm is a robust way for face recog-
nition, and the batches in BOLSH is exactly satisfies the
tasks in MTJSRC. Thus, the Multi-Batches Sparse Rep-
resentation and Classification (MBJSRC) is constructed
for actor identification on face recognition.

II. RELATED WORK

The task of actor identification in a movie/TV-series is
typically accomplished by combining multiple sources of
information, e.g. image, video and text, under little or even
no manual intervention. However, in movies/TV-series, the
names of actors are not always available, and the appearances
of actors vary in different conditions, which makes it hard to
detect, track and recognize these actors.

Zhttp://spark.apache.org/

Over the past two decades, extensive research efforts have
been actively concentrated on this task [6], [9], which detect
actor faces in photos or movies and associates them with
corresponding names. Besides, there are also several methods
using audio clues or both audio and vision clues, such as [10].
Meanwhile, in our previous work [11], we also proposed a
semi-supervised learning strategy to address celebrity identifi-
cation with collected celebrity data. More recently, Tapaswi et
al. [10] presented a probabilistic method for identifying actors
in movies/T V-series, and Bojanowski et al. [12] learned a joint
model of actors and actions in movies using weak supervision
provided scripts.

However, actor identification in video still faced a series of
challenges, i.e. many factors, like pose, light and expression,
etc., influence the way a face appears. Meanwhile, many
uncontrolled data quality factors, such as low resolution,
occlusion, nonrigid deformation, large motion and complex
background, also make the results of actor identification un-
reliable for most image based recognition, and the situation is
even worse in movies.

In order to maintain the intra-class similarity and differ-
entiate the inter-class samples, a possible and effective way
is to use the hashing methods. In the meantime, face or
actor features always have very high dimensions and also
the number of samples is still very large. Thus, the hash
projection can not only maintain characteristics for classifi-
cation and recognition, but also reduce feature dimensions for
more efficient processing. Considering the characteristics of
‘batch’ ideas in our previous work [7] for hash projection,
we combined the batch-orthogonalized random projection to
generated tasks for multi-task joint sparse representation and
classification [8].

In addition, Sang et al. [13] presented two schemes of
global face-name matching based frameworks for robust char-
acter identification. Their experimental results shown that
their approach is useful to improve results for clustering and
identification of the face tracks extracted from uncontrolled
movie videos. However, they only used 15 feature-length
movies, in which, the training set has 1327 face tracks, and the
testing set has 5012 tracks. Therefore, Zhang et al. [14] have
constructed a “Celebrities on the Web” dataset which contains
2.45 million distinct images of 421436 celebrities and is orders
of magnitude larger than previous datasets. Consequently, with
the large-scale of the massive face or actor-based video data,
the efficiency became a more and more crucial problem. Often,
the problems with facial recognition based actor identification
are rooted in the need for greater processing power, human and
machine. Furthermore, the efficiency problems are common
issues in the computer vision and pattern recognition areas.
In the same time, cloud computing as a model for enabling
ubiquitous network access to a shared pool of configurable
computing resources, has been enjoying its flourishing.

Cloud-based methods or applications always archive more
efficient performance [15], [16], [17], [18]. For example,
Gao et al. [15] proposed a new framework of providing
Handwritten Character Recognition as a Service based on
cloud computing technology. Wang et al. creatively proposed
a cloud-based approach to protect user’s data, enhance media
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Fig. 1: Scheme illustration of the proposed Cloud-based Actor Identification.

quality and reduce transmission overhead [19]. A cloud based
food recognition platform, in which an improved 2DPCA
algorithm is used for object recognition, and a Hadoop based
cloud server is built for this platform [16]. In [20], Shamim
and Ghulam, proposed a cloud-supported framework, where
speech and faces images are extracted from health monitoring
purposes. Zhang et al. proposed a cloud-assisted drug rec-
ommendation services to provide significantly more available,
reliable and efficient performance [21]. Lai e al. realized a
network and device aware QoS approach for cloud-based mo-
bile streaming, which effectively solves the limited bandwidth
problem available for mobile streaming and different device
requirements [22]. Suzuki et al. [17] utilized the cloud system
to maintain large-scale database which includes learning key-
points. We further note that in [23], Lin et al. proposed a green
video transmission algorithm in the mobile cloud networks.
Their work utilized video clustering and channel assignment
to achieve high quality video transmission.

Meanwhile, Ma et al. comprehensively addressed the objec-
tives and scientific challenges of Internet of Things (IoT) [24],
[25], [26]. Sheng et al. in [27] extensively studied the energy-
efficient device-to-device (D2D) communication scheme by
cooperative relaying in wireless multimedia networks. Liu
et al. in [28], [29], [30] presented a novel resource nego-
tiation scheme bridging between dynamic sensing tasks and
heterogeneous sensors. Liu et al. in [31], [32], [33] proposed
a novel framework and subsequent participant selection and
incentive mechanism for participatory crowdsourcing includ-
ing the smart device users, central platform and multiple
task publishers. In [34], existing incentive mechanism are
extensively surveyed and future research directions are clearly
given. Liu et al. [35] extensively analyzed the relationship

between energy consumption and smart device user behaviors,
and then proposed a novel approach to select the optimal
amount of participant while considering possible user rejec-
tions. Song et al. [36] introduced an energy consumption
index to quantify the average degree of how participants feels
disturbed by the energy cost, and proposed a suboptimal
approach for participant selection under the multi-task sensing
environment. Liu et al. [37] presented a quite novel family-
based healthcare monitoring system for long-term chronical
disease caring. Event detection systems and energy efficient
approaches are given in [38], [39] including both centralized
optimal approach and fully distributed suboptimal solutions by
participatory sensing. Furthermore, Zhang et al. [40] focused
on privacy leakage issues of participatory sensing and pre-
sented a participant coordination based architecture and flow
to successfully protect user privacy. Finally, Yurur et al. in
[41] presented a few posture detections schemes by using the
sensor equipped smart devices.

Nevertheless, Apache Spark is a fast and general-purpose
cluster computing framework for cloud computing. It provides
high-level APIs in Java, Scala, Python and R, and an optimized
engine that supports general execution graphs. Therefore, we
used the cloud ideas of Spark framework to fast the shot
boundary detection and feature hashing processing, which cost
most of the time and result in low efficiency in the whole
framework.

Network transmission and energy consumption is also a
big issue for cloud computing. Liu et al. [42] presented a
novel concept of quality of service (QoS) index to integrate
the multi-dimensional QoS requirements to ensure the degree
of QoS satisfactions. In [43], the authors proposed a novel
MIMO routing scheme to ensure QoS. Liu et al. [44] proposed
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a novel localization-oriented sensing model and a new notion
of coverage, Localization-oriented coverage (L-coverage for
short), by using Bayesian estimation theory. Yu et al. [45]
proposed a stochastic load balancing scheme, and finally pro-
vide probabilistic guarantee against the resource overloading
with virtual machine migration, while minimizing the total
migration overhead. Yu et al. [46] considered the problem
of scaling up a virtual network abstraction with bandwidth
guarantee in Cloud datacenters. The authors in [47] efficiently
optimized the tradeoff between the energy consumption of
wireless camera sensor networks and the quality of target
localization.

III. OVERVIEW OF CLOUD-BASED ACTOR-SPECIFIC SHOTS
RETRIEVAL

As shown in Fig. 1, our actor identification framework
mainly includes four parts: cloud-based video segmentation,
face tracks generation, cloud-based feature representation, and
MBIJSRC for recognition. Besides, we propose a actor-specific
shots retrieval application based on these four parts. For
the first part, namely, video segmentation, we revised an
accelerating shot boundary detection in our previous work
[48] by adding the parallel computing with Spark for massive
pixels processing. Then, the face tracks are generated with
efficient face detection and tracking methods. After, in feature
representation, the SIFT features in face tracks are hashed in to
new feature space with BOLSH, and also the feature hashing
and dimension reducing is realized by cloud-based hashing
with Spark. Finally, ideas of ‘batch’ in BOLSH is mapped into
‘task’ in the multi-task joint sparse representation algorithm,
to form our classification algorithm named MBJSRC.

Hitherto, with the proposed framework, each face track
has been assigned with a actor name. Based on the results
of actor identification, there are many applications, such
as actor/character-specific movie retrieval, personalized video
summarization, intelligent playback and video semantic min-
ing, etc. Meanwhile, with the cloud-based shot boundary
detection, each video has been segmented into several shots.
Actually, there are always several face tracks in each video
shot, and each shot can be assigned with several actor names,
which is the key word for actor-specific shots retrieval. More
specifically, a cloud-based shot boundary detection method is
applied to divide the movie into several shots at first. Secondly,
the face detection and tracking processing are applied, and
after the identification of all the detected face tracks in these
shots, each shot will been labeled as several actor names.
Finally, by using the character name or actor name as the query
entry, the corresponding actor’s spotlights shots are presented
to the user.

IV. CLOUD-BASED SHOT BOUNDARY DETECTION

Here, the shot changes are automatically detected using
the cloud version of our previous accelerating shot boundary
detection method.
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Fig. 2: Illustration of Focus Region. The frame is partitioned
into 8 x 10 sub-regions, and the outermost round sub-regions
are non-focus region, second outermost round sub-regions are
the second focus region, remaining sub-regions are the most
focus region.

A. Accelerating Shot Boundary Detection

At first, we described the original accelerating shot bound-
ary detection as:

1) We accelerate the shot boundary detection process in

spatial domain in two aspects: one, by processing only
the pixels in Focus Regions.
Specifically, a video has thousands of frames, and each
frame has thousands of pixels. These vast frames and
pixels make the computation complexity very high,
which is the main reason that many shot boundary detec-
tion methods or systems have low efficiency. Although
spatial sub-sampling of frames has been suggested to
improve video processing efficiency, it still depends
on the choice of the spatial window. Smaller window
size is sensitive to object and camera motions, while
arbitrary window size could not make the remaining
pixels represent the frame well.
Generally, the most essential information in a frame is
always concentrated around the center of a frame, and
the more the pixels are close to the frame center, the
more important the pixels are. In order to reduce the
processing time, redundant pixels should be removed
and only informative pixels are kept for processing. To
accomplish this, a Focus Region is defined for each
frame. The Focus Region of a P x () sized frame is
extracted in the following steps.

1-1 Each image is divided into non-overlapping sub-
regions of size (P/p) x (Q/q) to get p x ¢ number
of sub-regions.

The most external surrounding sub-regions (Col-

ored with red in Fig. 2) are defined as the non-

focus region.

The outer-most external surrounding sub-regions

(Yellow sub-regions) are defined as second focus

region.

Remaining sub-regions around the center are de-

fined as focus region.

1-2

1-3

1-4

To get an informative while compact representation of
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Fig. 3: Tllustration of adaptive skipping interval.

a frame, the non-focus region is discarded, the second
focus region is down-sampled by keeping only pixels
with odd x-coordinates. The focus region is fully kept.
We accelerate the shot boundary detection process in
temporal domain by skipping frames adaptively. Instead
of degrading the accuracy, almost all boundaries could
be detected including gradual transitions which are hard
to be detected. In order to efficiently reduce the number
of processed frames and also not to drop any boundaries
between two shots, we set the initial skipping interval as
dy. Then, the following skipping intervals are updated
adaptively based on the similarity of frames. As shown
in Fig. 3, {di,ds,...} denotes the sequential skipping
intervals, and {D;, Dy, ...} is the serial frame number
in the original video corresponding to all skipping inter-
vals. D;. is defined as

k
Dy, = Z dy, .
m=1

When ay , is the similarity ratio between the x4, and
yen, frame, we update the skipping interval d; as follows.

(1)

j—1

1
dj = Z jaDd—thdk
k=1 J

(6). 2
That is, the greater « is, the larger of the skipping inter-
val is. These updated intervals are reasonable. Because
a great « in current skipping interval means the skipped
frames are very similar, we can boldly skip more frames.
But if « is small, it implies there are many changes in the
skipped frames and we need to cautiously skip frames,
so as to avoid classifying a motion as a shot boundary
and also avoid missing shots with less frames. Generally,
human visual reaction time is about 1 — 2 seconds.
Suppose the video frame rate is about 20 — 25 fps, then
a shot that can cause visual reaction need last for 20— 50
frames at least. Therefor, the initial skipping interval d;
is set to 40.

After, given the current processed frame Fj, if a; j1q; >
T. (the threshold assigned in experiment), we can assert
that F; is similar to Fz‘-s-dj, and skip to process the next
dj4+1 frames. Otherwise it means that there is a shot
boundary existing between F; and Fjyq4,. Thereby, we
use a bisection search to find a refined boundary in this
range. First, we compute «; ;1 4, /2 and iy q; /2 i1a;- If
Qiyd,/2,i+d; > T, boundary lies in the first half of F;
to FHd]., otherwise in the second half. Then, the same
process is carried out in the first half or second half of

Fj to Fiyg; to refine the boundary position until half of
the range is only one frame.

We evidently accelerated the shot boundary detection
process and detect gradual transitions more robustly, no
matter if the gradual transition is fade in/out, dissolve or
wipe. Moreover, it requires to compute mutual informa-
tion for n — 1 times on a video sequence of n frames by
using traditional frame by frame searching process, but
in our approach, we just need to compute it for logn
times.

3) A corner can be defined as the intersection of two edges.
A corner can also be defined as a point for which there
are two dominant and different edge directions in a
local neighborhood of the point. The corner distribution
is the distribution of all detected corners scattered in
a image. Thus, the corner distribution of frames near
candidate shot boundaries is adopted to remove most
of the false boundaries and to find the precise interval
of the true boundary. So far, it nearly detected all the
boundaries. However, camera or object motion could
also lead to significant change of frame content when
we skip frames aggressively. Thus, several false shot
boundaries are caused by camera or object motion,
which are the main false boundaries. In order to remove
these false boundaries, we used the corner distribution
analysis. More specifically, 1) in abrupt transitions, a
frame abruptly changes into a totally different one; 2)
changes in gradual transitions always last about 5 — 20
frames, which couldn’t be felt by audience; 3) changes
in false boundaries always last more than 100 frames.
Actually, corner distribution of frames in true boundary
(abrupt and gradual transitions) is very different from
its forward and backward frames, but it is more stable
and consistent in camera and object motion caused false
alarms.

B. Cloud-based Mutual Information Calculation

Although our original shot boundary detection really accel-
erated the shot boundary detection, it still cost unacceptable
time for massive videos. More specifically, we found that
most of the time is cost for entropy and mutual information
calculation in and between frames. In fact, in the mutual
information calculation on the Focus Regions, the gray value
of each pixel is summarized and then the portion of each
gray value (0 to 255) is calculated. After, these portion is
looked as distribution probability to generate the entropy with
Shannon Theory. By analyzing the whole flowchart of mutual
information as well as frame similarity calculation, an intuitive
idea is that a data-parallel programming model for clusters of
commodity machine can handle this issue well. Thus, we used
the Spark framework for mutual information calculation.

Specifically, entropy measures the information content or
“uncertainty” of X and is given by:

H(X) ==Y px(z)logpx(z). 3)
The joint entropy of X,Y is defined as:
H(X,Y) ==Y pxvy(z,y)logpxy(z,y). 4)
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The mutual information between the random variables X
and Y is defined as:

I(X,Y)=H(X)+H(Y) - H(X,Y). (5)

Let V = {F, F,,...,Fy} denotes the frames of a video
clip V. For two frames (i.e. I, and F,), we first compute
their own entropies(i.e. H,, H,) and their joint entropy
(i.e. Hy ). The mutual information between them is given
by Equation (5). If Iij, Igy, Ify respectively represent
the mutual information of each RGB component, we set
Ly = IF, + IS, + IP, as the muwal information between
frame F, and F,.

Generally, Spark provides the Resilient Distributed Dataset
(RDD) abstraction trough a language integrated API in Scala®.
In the cloud version of the shot boundary detection, we
calculate the entropy and mutual information with Spark
programming. In fact, we used several basic functions in
Spark, i.e., map(), reduce() etc. Analyzing Equation 3, the
following pseudo-program implements the entropy calculation
processes.

1) val points = sc.parallelize(list(pixels in a image))

2) val p = points.map(z => (x, 1)).reduceByKey((x,y) =>
z + y).collect
var sq = width x height
p=p.map Values(_/sq)

5) p=p.mapValues(x => (—z * logx))

6) var ha = p.reduce((z,y) => = + y)

We start by defining a RDD called points as which refer
to all the pixels in a image. Actually, the calculation of joint
entropy is with the same code to realized Equation 4, and
we can get the mutual information between two frames with
Equation 5.

With the above pseudo-program, a series of processes for
all the pixels are distributed into different virtual machines in
parallel. After, the whole calculation efficiency has been im-
proved obviously, which will been shown in the experimental
results.

3)
4)

V. FACES DETECTION AND TRACKING IN SHOTS

The OKAO face detector *, is used to detect frontal faces
and profile faces with 30 degree towards left or right in frame.
Actually, a typical movie may contains tens of thousands
of detected faces. However, these faces merely arise from a
few hundred “tracks” of a particular actors. Therefore it is
feasible to discover the correspondences between faces and
reduce the volume of the data that needs to be processed.
Furthermore, stronger appearance models can be built for
each actor since a face track provides multiple examples
of the actor’s appearance. To obtain face tracks, a robust
foreground correspondence tracker [49] is applied for each
shot. In practice, the face detection algorithm will be tried in
the first few frames of a shot, and it will go with tracking only
if face is detected. And if the faces of a actor are occluded
in the beginning of a shot, that actor can not be detected and
identified.

3http://www.scala-lang.org
“http://www.omron.com/r_d/coretech/vision/okao.htm]

Using the tracking algorithm in [49], with the assumption
that the target face region can be represented by a set of
superpixels without significantly destroying the boundaries
between target and background, we model the prior knowledge
regarding the target and the background appearance by

yi(r) = {

Here sp(t,r) denotes the ry, superpixel in the ¢;;, frame,
and y;(r) denotes its corresponding label. A robust superpixel-
based discriminative appearance model is generated based
on four factors: cluster confidences, cluster centers, cluster
radius and cluster members. This discriminative appearance
model facilitates a tracker to discriminate the face region
and the background with mid-level cues. After, the target-
background confidence map is used to formulate the tracking
task, and the best candidate is obtained by the maximum a
posterior estimates. With the superpixels tracking, we collect
faces belonging to tracks efficiently and accurately, and more
details about the tracking algorithm can be seen in [49].
However, short tracks which are often introduced by false
positive detections are discarded, and an example of the final
face tracks is shown in Fig. 4.

To extract face features and construct the representations,
a part-based descriptor extracted around local facial features
[6], [9] is utilized. Here we first use a generative model [6] to
locate the nine facial key-points in the detected face region,
including the left and right corners of each eye, the two
nostrils and the tip of the nose and the left and right corners
of the mouth. Then we extract the 128-dim SIFT descriptor
from each key-point and directly concatenate them together
to form our final face descriptor with dimensionality 1152.
Fig. 5 illustrates some selected faces with facial feature points
marked in our approach.

L,
_]_7

if sp(t,r) € target,

6
if sp(t,r) € background. ©

VI. CLOUD-BASED BOLSH

In order to make large-scale image or video processing
practical, Locality-Sensitive Hashing is one of the way. Be-
cause it reduces the dimensionality of high-dimensional data,
namely, it hashes input items so that similar items map to the
same buckets with high probability. That is, Locality Sensitive
Hashing can not only maintain the similarity between items,
but also reduce the feature dimensions.

Sign-Random-Projection Locality-Sensitive Hashing (SRP-
LSH) is a widely used hashing method, which provides an
unbiased estimate of pairwise angular similarity, yet may
suffer from its large estimation variance. We propose the
Batch-Orthogonal Locality-Sensitive Hashing (BOLSH), as
a significant improvement of SRP-LSH [7]. The proposed
BOLSH not only has the properties of Locality-Sensitive Hash-
ing on maintaining item similarity and reduce dimensions, but
also easy to applied to the cloud computing framework with
several independent batches.

A. BOLSH

Locality-sensitive hashing aims to hash similar data samples
to the same hash code with high probability. Based on the

1520-9210 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2016.2579305, IEEE

Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, JANUARY XXXX

%
\

2jpg

-
-
-
-
-

Lipg 3jpg

-
-
-
-
-

7jpg 8jpg %jpg
13jpg 14jpg \ 15jpg
. .
19,jpg \ 20,jpg 21jpg
25.jpg 26jpg 27.jpg

4jpg 5jpg 6.ipg

10jpg 11jpg 12jpg
. .
16jpg 17jpg 18jpg
22.jpg 23.jpg 24,jpg
28.jpg 2%.jpg 30jpg

Fig. 4: Examples of the first 30 faces of a face track for ‘Jack’ in Titanic, and the number below the image is the index of

the face in the face track.

Fig. 5: Examples of detected face with facial feature points.

locality-sensitive property, a fundamental usage of locality-
sensitive hashing is to generate sketches, or signatures, or
fingerprints, for reducing storage space while approximately
preserving the pairwise similarity. These sketches or signatures
can be used for higher-level applications, e.g., clustering, near-
duplicate detection. Moreover, locality-sensitive hashing can
further be used for efficient approximate nearest neighbor
search, which is one of its most important applications. We
can index the hash code in an efficient way, i.e., in hash tables,
to enable efficient search for similar data samples to a query.

SRP-LSH is an important binary locality-sensitive hashing
method, which is widely used and extensively studied. The
Hamming distance between two codes of SRP-LSH provides
an unbiased estimate of the pairwise angular similarity. Al-
though SRP-LSH is widely used, it may suffer from the
large variance of its estimation. In our previous work [7],
we proposed Batch-Orthogonal Locality-Sensitive Hashing
(BOLSH), as an improvement over SRP-LSH. Instead of

independent random projections, BOLSH makes use of batch-
orthogonalized random projection vectors, as illustrated in
Fig. 6. It is proven in [7] that BOLSH also provides an
unbiased estimate of pairwise angular similarity, and has a
smaller variance than SRP-LSH when the angle to estimate is
in (0,7/2].

The proposed BOLSH method is closely related to many re-
cently proposed principal component analysis-style learning-
based hashing methods, which learn orthogonal projec-
tions. Although BOLSH is purely probabilistic and data-
independent, the model of orthogonal random projection to-
gether with its theoretical justifications can help gain more
insights and a better understanding of these learning-based
hashing methods. Furthermore, since theoretical analysis and
experiments both show that BOLSH approximates the angle
between two vectors more accurately, BOLSH, in replace
of SRP-LSH, can be used in various applications requiring
massive angle-related computations, e.g., dot product, angular
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Fig. 6: Examples of 12 BOLSH projection vectors w; generated by orthogonalizing independent random projection vectors v;

in 4 batches.

similarity, cosine similarity, Euclidean distance.

SRP-LSH [7] is a widely used locality-sensitive hashing
method for angular similarity, which embeds real vectors into
Hamming space. Angular similarity is defined as follows:

1—=0qp/m @)

where 0, = arccos(%) € [0, 7] is the angle between
vector a and b, and (a, b) means the inner product.
Meanwhile, a SRP-LSH function is defined as,

hy(z) = sgn(va), (8)

sim(a,b) =

where v refers to a random vector sampled from the normal
distribution A/ (0, I;) and

1, 2>0
sgn(z) =<’ =7 9
gn(z) {0, z < 0. ©)
Given two data samples a and b, the locality-sensitive is
that,

Pr(hy(a) # hy(b)) =

By independently sampling K d-dimensional vectors
v1,...,Vk from the normal distribution A (0, 1), a binary-
vector-valued function h(z) = (hy,, Ry, - - -5 By (@), which
concatenates K SRP-LSH functions, thus produces K-bit
codes. Then by the locality-sensitive property, it is easy to
prove that

E[dHamming(h(a)a h(b))] =

where C' = K /7.

Based on the SRP-LSH, the ideas of BOLSH is just to
orthogonalize N(1 < N < min(K,d) = K,1 < K < d
of the random vectors sampled from the normal distribution
N(0,1;), where d is the dimension of data space. With
orthogonalization, the resulting N vectors are no longer in-
dependently sampled, thus we group their corresponding bits
together as a N-batch, and N is called the batch size. Formally,
assuming that K = N x L, and 1 < N < d, K random vectors
V1,02, ...,V are independently sampled from the normal
distribution N (0, 1), and then are divided into L batches with
N vectors each. The QR decomposition is processed to these
L batches of N vectors respectively. After, we get K = N x L

Oap. (10)
™

K0,y

™

= Cea,ba (11)

projection vectors wy, wa, . .., wg. This results in K BOLSH
functions (A, s Py - - - s Py ), Where hy,, is defined as

ho,; () = sgn(wlToz) (12)

In conclusion, with the BOLSH algorithm, each data sample
with d dimensions is transferred into a K dimensions vector
with N batches (X = N x L, each batch have L dimensions).
Actually, the batch in BOLSH exactly matches the element of
task in the following used multi-task joint sparse representa-
tion and classification algorithm for video face recognition.

B. BOLSH by Cloud Computing

With input: Data space dimension d, batch size 1 <
N < d, the number of batches L > 1, resulting code
length K = N x L, the BOLSH will generate a random
matrix H = [v1, v, ...,vk] with each element being sampled
independently from the normal distribution A/(0,1). After
the orthogonalization, we get the output projection matrix
H = [w1,wa,...,wk]. In fact, while we extracted a 1152
dimensions feature for each face, we set K = 400, N =
80, L = 5 in our experiment.

With the projection matrix of BOLSH, all faces detected
and tracked from the video need to be projected into the hash
space. Nevertheless, a video always has a large number of
frames, and also each frame contains several faces. That is,
there will be massive faces to be projected, and this will result
in very low efficiency. In fact, when the projection matrix is
acquired, all the face images are dealt with a series of the
same pixel value wise calculations. Intuitively, the BOLSH
projection can be done by map/reduce processes in a cloud
computing framework.

More specifically, the map/reduce functions in the Spark
computing framework are used to do the BOLSH projection
for all face images in parallel. Actually, the following pseudo-
program implements the BOLSH projection for all face images
in parallel.

1) val faces = sc.parallelize(list(faces detected and tracked

in the video))

2) val f=f.mapValues(z => (I:I dotx))
where H is the projection vector for BOLSH. Actually, these
vectors are generated randomly, and also been grouped and
orthogonalized.
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VII. KERNEL-VIEW MULTI-BATCH JOINT SPARSE
REPRESENTATION AND CLASSIFICATION

Given a set of retrieved gallery face images and the extracted
probe face tracks, we present in this section a simple yet
efficient algorithm for face track identification. Each unlabeled
face track is simply represented as a set of BOLSH projection
features by image feature vectors extracted from all images in
the track. One simple method for identification is to directly
calculate the feature distances between a probe face track and
the labeled exemplar faces, and then assign the probe face
track to the nearest neighborhood. Another feasible method
is to classify each image in the track independently via, e.g.,
sparse representation classification, and then assign the face
track to the subject that achieves the highest frequency.

In this work, by viewing the identification of each image in
a probe face track as a task, the face track identification can be
naturally casted to a multi-task face recognition problem. This
motivates us to apply the multi-task joint sparse representation
model [8] for face track classification. The key advantage
of multi-task learning lies in that it can efficiently make
use of complementary information contained in different sub-
tasks. In addition, we also extend the multi-task learning
into kernel-view, which is more competitive than the state-
of-the-art multiple kernel learning methods for face tracks
recognition.

A. Multi-batch Joint Sparse Representation based Recognition

Suppose we have a set of exemplar faces with M subjects.
Here, a subject means a person, which refers to a set of
the same person’s faces. Denote X' = [X!,... X},] as the
training feature matrix, and X! € R%*Pm is associated with
the myj, subject, where d; is the dimensionality of the [y, batch
of the BOLSH hash value, and p = 2%21 Pm Mmeans the total
number of training samples. Here, we consider a supervised
L-batch (task) linear representation problem as follows:

M

y' =) Xhuh, +ei=1,...,L, (13)
m=1

where y = y' means one face of a face track and y' as a

batch (task) is the l;, batch of each face image’s BOLSH hash

value in this track. Meanwhile, w!, € RP™ is a reconstruction

coefficient vector associated with the my;, subject, and el is as

the residual term. Denote w' = [(wW})7T, ..., (wh,)T] the rep-
resentation coefficients in batch [, and w,, = [w},,...,wk] the

representation coefficients from the m-th subject across dif-
ferent batches (tasks). Furthermore, we denote W = [w!, ],
Therefore, our proposed multi-task joint sparse representation
model is formulated as the solution to the following problem
of multi-task least square regressions with ¢; o mixed-norm
regularization:

M

2 M
X! w :
W m%m +>‘Z || Wm H2
2 m=1
(14)
Here, to optimize the model, the accelerated proximal
gradient [8] is adopted to solve the Eqn. (14) with fast conver-

gence rate guaranteed. The accelerated proximal gradient is

L
1
min F(W) = 52 y' —
=1

m=1

It

composed by a weight matrix sequence Wt = [wi!

Ji>1- and
an aggregation matrix sequence V¢ = [vLt];~;. The Wit! is

updated according to the result,

Ghttl = bt — Wbt 1 =1,... L, (15)
A ~
S =1 b m =1, M. (16)
llwn |2
Here Vit = —(XH)Ty! + (XHT X150, i is the step size

parameter, and [e]; = max(e,0). In addition,

a1 (1 — Oét)(
Qi

7aan N e W ), (17)
where o is directly set as 2/(t + 2)[8] in our approach.
With the accelerated proximal gradient algorithm, we ob-
tained the optimal W = [&! ], where w! associated with
the [y, task (batch) in the my, subject. The Iy, batch y' of
each face image f; in a face track can be approximated as
y' = X! w! . For classification and recognition, the decision is
ruled in favor of the subject with the lowest total reconstruction

error accumulated over all the L batches:

L
m; = argmﬁXZQl |y' — an@inHi ’ (18)

=1

where QllL:l(Zl 6" = 1) are the weights that measure the
confidence of different batches in final decision.

There are tens of faces in each face track, and each of the
face have assigned a subject label with Equ. 18. After, the
whole face track is recognized with an unified subject by,

J

m* = arg max z:[[m;k ==m]. (19)
m =

We call the model (14) along with classification rule (18

and 19) as the Multi-Batches Joint Sparse Representation and
Classification (MBJSRC) in this paper.

B. The Kernel View Extensions Recognition

Heretofore, the face track identification is feasibly realized
by the MBJSRC algorithm for sparse representation and
classification. In order to combine multiple feature kernels for
face track recognition, we extend the MBJSRC algorithm to
the kernel version as described in [8].

For a Reproducing Kernel Hilbert Space, the kernel trick is
to use a non-linear function ¢'(z;)T¢'(z;) = ¢'(x;, ;) for
some given kernel function g'. Let G! = ¢!(X")T¢!(X") be
the training kernel matrix associated with the /;;, modality of
the feature, and h! = ¢'(X!)¢!(y') be the test kernel vector
associated with the l;;, modality. In our approach, the simple
and available kernel matrix is constructed by directly using
vector h! and the column of each kernel matrix G' as the ex-
tracted new features. In this new space, the original multi-task
least square regressions with ¢; » mixed-norm regularization
problem can be written as:

= M 2 M
winE ) = 37 = 3 it | 33 ol
m=1 2 m=1

=1
(20)
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Actually, in the experiment, the kernel matrices are computed
as exp(—x2(z,x )u), and p is set to be the mean value of the
pairwise x? distance on the training set.

VIII. EXPERIMENTAL RESULTS

We conduct extensive experiments to evaluate the efficiency
and effectiveness of the proposed cloud-based actor identifi-
cation with BOLSH and sparse representation. This section is
organized as follows: Subsection VIII-A introduces the details
of construction of the used dataset. Subsection VIII-B demon-
strates the efficiency of cloud-based shot boundary detection
and the cloud-based BOLSH. VIII-C details the effectiveness
of our approach with different settings in BOLSH. Meanwhile,
Subsection VIII-D shows a naive approach of the Sparse
Representation (SR) classifier, and also we demonstrate the
performance comparison among our approach, the Nearest
Neighbor (NN) and the SR classifier as well as the SVM
classifier.

A. Dataset Construction

Since we mainly test our approach on a movies(“Titanic”
(1997)) and a TV series of The Big Bang Theory, episode 1-5
from season 2, we constructed our dataset from image data
and video data as follows,

o Gallery Dataset: we select 8 actors who are the main
actors in our selected movie and TV series, namely,
characters of Rose, Jack, Caledon, Leonard, Sheldon,
Penny, Howard and Rajesh. For character of each actor,
we first retrieve related face images from Google Image
and Bing Image respectively using the names of actors as
query. Then, the above mentioned OKAO face detector
are applied on the images returned by the research engine.
And, totally 100 face images are added to the Gallery
Dataset with the name of the actors as the label. Actually,
the 100 face images means the first 50 faces from both
the query results from Google Image and Bing Image
respectively. Therefore, finally, there are 8 x 100 face
images in our Gallery Dataset.

o Video Data: A video corpus consisting of 1 movie and
5 episodes of TV series is downloaded from the Internet.
The resolution of these videos are 1280 x 720, and also
and the frame rate is about 25fps.

Meanwhile, by only considering the detected tracks, the
volume of frames that need to be processed can be largely
reduced to accelerate the classification process. With the
cloud-based shot boundary detection, each video is segmented
into several shots, as shown in Table I (The Bigbang 1 ~ 5
refer to episode 1 ~ 5 of The Big Bang Theory, season 2).

After the video is segmented into shots, the tracking process
takes the results of OKAO face detection® as input, and gen-
erates several face tracks using the tracking algorithm in [49].
Then, a nine-point SIFT feature is used in the experiments,
namely, to extract face features from the exemplar faces and
face tracks. Referring to the work of Everingham et al. [9], a
generative model is adopted to locate the nine facial key-points

Shttp://www.omron.com/r_d/coretech/vision/okao.htm]

TABLE II: Efficiency of Cloud Based Approach

Videos #Shot Cost Time (s)
Our Approach | Method [48]

Titanic 1550 1153 3773
The Bigbang 1 374 372 1151
The Bigbang 2 | 387 501 1214
The Bigbang 3 | 380 447 1098
The Bigbang 4 | 368 398 1133
The Bigbang 5 | 394 426 1208

in the detected face region, including the left and right corners
of each eye, the two nostrils and the tip of the nose and the
left and right corners of the mouth followed by 128-dim SIFT
feature extraction process.

B. Efficiency of Cloud-based Approaches

In this subsection, we illustrate the efficiency of two cloud-
based processes, namely, the cloud-based shot boundary detec-
tion and the cloud-based BOLSH. The hardware environment
of the system includes the video storage and processing center:
Intel Core™ 2 Quad Q9550 CPU, 2.83 GHz (4-kernel)
frequency, 12G memory. For the cloud-based shot boundary
detection as well as the cloud-BOLSH hashing, we used
totally 4 nodes, including one physical machine and 3 virtual
machine, and each machine has 2G memory. Firstly, we do
efficiency comparison with the approach with cloud computing
ideas, and the accelerating shot boundary detection methods
in [48], which is shown in Table II.

In addition, in order to analyze the efficiency of our cloud-
based BOLSH hash method, we manually chose 149 face
tracks with 11692 face images in the movie “Titanic” and
254 face tracks with 20311 face images in the TV series of
“The Big Bang Theory”. Meanwhile, we extracted a 1152
dimensions feature vector for each face. That is, we evaluate
our cloud-based approach on totally 32003 face images. Using
the projection matrix H generated in VI-A, we project the
sample matrix X € RU52x32003 into a hashing matrix
X, € RA00x32003 with K = 400, N = 80, L = 5.

Since all these faces can be hashed with the same processes,
we used the cloud-based framework to assign the data in
HDFS database and also the projection processes into different
computing nodes. With the cloud computing ideas, all the face
images will be projected in parallel. Since all the projection
tasks are distributed to different virtual machines, our cloud-
based BOLSH hashing has obviously achieved more high
efficiency compare to the original BOLSH.

C. Recognition Performance of the BOLSH and MBJSRC

While we combined the characteristic of ‘batch’ in BOLSH
with the ideas of ‘task’ in MTJSRC, our approach achieved
more satisfactory performance in the recognition effective-
ness and accuracy. As shown in Table III, we evaluate the
recognition accuracy of BOLSH combined with MTJSRC with
different setting of K, L and N in BOLSH.
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TABLE I: summary of test movies

Movies Duration(min) Resolution #Shot | Genres

Titanic 195 1080 x 720 1550 | Drama&Romance
The Bigbang 1 | 22.3 1080 x 720 374 Comedy

The Bigbang 2 | 21.8 1080 x 720 387 Comedy

The Bigbang 3 | 22.1 1080 x 720 380 Comedy

The Bigbang 4 | 22.5 1080 x 720 368 Comedy

The Bigbang 5 | 21.8 1080 x 720 394 Comedy

TABLE III: Recognition Performance of BOLSH combined with MBJSRC

Videos #FaceTracks Parma. of BOLSH
N=1152,L=1 | N=80,L=5 | N=100,L=8

Titanic 170 80.6% 83.5% 78.2%
The Bigbang 1 84 90.5% 92.9% 88.2%
The Bigbang 2 71 87.3% 87.3% 85.9%
The Bigbang 3 80 91.2% 93.7% 88.7%
The Bigbang 4 97 88.6% 90.7 % 88.7%
The Bigbang 5 75 88.0% 93.3% 88.0%

D. Performance Comparisons with Different Approaches

Three baseline methods are employed for comparison: i)
the nearest neighbor (NN) classifier used in [9] which directly
calculates the feature distances between a probe face track and
the labeled exemplar faces, and then assigns the probe face
track to the nearest neighborhood; ii) the sparse representa-
tion(SR) classifier [50]; and iii) the SVM classifier. For the
SR and SVM methods, they classify each image in the track
independently and then assign the face track to the subject
that most frequently occurs in this track. In addition, for SR
algorithm in [50], we give some details about how to use it in
our track level face recognition.

Suppose the matrix X = {X,,,} for the entire gallery set is
the concatenation of the p = > | py, training samples of all
M subject classes. Denote X, = [Um 1, Um.2, -« - Um.p,] €
R4*Pm a5 the myy, subject samples. For a new (test) face track
y with K face images, we first classify the k;, face into the
class ¢, € {1,..., M}, and also define C = [cq,...,cKk]
as the class vector for the test face track. Then, we assign
¢ = argmax,, |[C — m||p, which means the most frequently
occurred subject class, as the final subject class for the test
track. Meanwhile, the class label c¢; of the k;, face in the
track is obtained as follows.

Y 1s the kg, face in the face track, and represented as,

Y = Xa + e, (21)
where ¢ € RP is the coefficient vector. Then, to get the
informative vector o = [aT,... al/]T is equivalent to the

solution of the following ¢;-minimization problem,

&1 = argmin||af|;  subject to yr = Xa+e. (22)

That is, to solve the following problem,

1
T2
This problem can be solved in polynomial time by standard

linear programming methods [51]. After, we classify yg to
the subject class that minimizes the residual between yg and

Yo'

min Fa) = -y — X5 + Aex. (23)

Ck zargn}riLnHyk—XmamHz- (24)

There always exist a few incorrect faces in the gallery set,
and thus training based methods, e.g., SVM and Subspace
analysis, are not applicable in our setting, as shown in Table
IV. In contrast, our multi-task linear representation based
method is quite robust for the condemnation since the joint
representation ability of noise images is lower compared with
those “good” samples.

Using N = 80, L = 5 for BOLSH, the evaluation results are
listed in Table IV, from which we can see that our approach
significantly outperforms both baselines. In our experiment,
the adopted accelerated proximal gradient algorithm con-
verges at roughly 10 ~ 20 rounds of iterations. The average
running time is 0.31s per probe face track. The parameter A
in (5) is set to 0.1 throughout our experiment.

IX. CONCLUSION

With explosive development of social network and video
sharing websites, an efficient and accurate way to index and
organize videos according to the identities of the involved per-
sons becomes heavily demanded. Meanwhile, querying actor-
specific video clips in large scale video dataset has attracted
much attentions in both video processing and computer vision
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TABLE IV: Recognition Performance of Different Approaches

Videos #FaceTracks | Our Approach | SR Method | NN Method | SVM Classifier
Titanic 170 83.5% 81.7% 78.2% 69.5%
The Bigbang 1 84 92.9 % 91.7% 83.3% 78.9%
The Bigbang 2 71 87.3% 85.9% 74.6% 71.6%
The Bigbang 3 80 93.7 % 88.7% 87.5% 85.1%
The Bigbang 4 97 90.7% 90.7% 85.5% 81.7%
The Bigbang 5 75 93.3% 86.7% 86.7% 84.2%
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