
1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589247, IEEE
Transactions on Services Computing

UNDER REVIEW: IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, MAY 2015 1

Opportunistic Task Scheduling over Co-Located
Clouds in Mobile Environment

Min Chen, Senior Member, IEEE, Yixue Hao, Student Member, IEEE, Chin-Feng Lai, Senior
Member, IEEE, Di Wu, Member, IEEE, Yong Li, Senior Member, IEEE, Kai Hwang, Fellow, IEEE

Abstract—With the growing popularity of mobile devices,
a new type of peer-to-peer communication mode for mobile
cloud computing has been introduced. By applying a variety
of short-range wireless communication technologies to establish
connections with nearby mobile devices, we can construct a
mobile cloudlet in which each mobile device can either works as
a computing service provider or a service requester. Although
the paradigm of mobile cloudlet is cost-efficient in handling
computation-intensive tasks, the understanding of its correspond-
ing service mode from a theoretic perspective is still in its
infancy. In this paper, we first propose a new mobile cloudlet-
assisted service mode named Opportunistic task Scheduling over
Co-located Clouds (OSCC), which achieves flexible cost-delay
tradeoffs between conventional remote cloud service mode and
mobile cloudlets service mode. Then, we perform detailed analytic
studies for OSCC mode, and solve the energy minimization
problem by compromising among remote cloud mode, mobile
cloudlets mode and OSCC mode. We also conduct extensive
simulations to verify the effectiveness of the proposed OSCC
mode, and analyze its applicability. Moreover, experimental
results show that when the ratio of data size after task execution
over original data size associated with the task is smaller than 1
(i.e. r < 1) and the average meeting rate of two mobile devices λ
is larger than 0.00014, our proposed OSCC mode outperforms
existing service modes.

Index Terms—task schedule; mobile cloud computing; mobile
cloudlets; allocation optimization.

I. INTRODUCTION

Nowadays, due to the explosive increase of mobile de-
vices and data traffic, various innovative technologies have
been developed to transfer data more efficiently by the use
of large quantities of mobile devices connected with each
other. However, as mobile devices have limitations in terms
of computing power, memory, storage, communications and
battery capacity, the computation-intensive tasks are hard to
be handled locally. Fortunately, the paradigm of mobile cloud
computing (MCC) enables mobile devices to obtain extra
resources for computing, storage and service supply, and

M. Chen, Y. Hao are with School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
(minchen@ieee.org).

C. Lai is with Department of Engineering Science, National Cheng Kung
University, Taiwan (cinfon@ieee.org).

D. Wu is with Department of Computer Science, School of Information
Science and Technology, Sun Yat-sen University, Guangzhou 510006, China
(wudi27@mail.sysu.edu.cn).

Y. Li is with with Tsinghua National Laboratory for Information Science
and Technology, Department of Electronic Engineering, Tsinghua University,
Beijing 100084, China (liyong07@tsinghua.edu.cn).

K. Hwang is with Electrical Engineering and Computer Science, the
University of Southern California, USA (kaihwang@usc.edu).

may overcome above limitations [1]. Typically, computation-
intensive tasks can be uploaded to the remote cloud [2] through
cellular network or WiFi. Though WiFi is energy efficient
with high data rate, its connections are intermittent in mobile
environments. In contrast to WiFi, cellular network provides
stable and ubiquitous connections with high cost.

In recent years, as a direct short-range communication mode
between devices in the same district, device-to-device com-
munication (D2D) has been well studied in terms of its tech-
niques, application cases, and business models [3] [4] [5]. With
the enormous increase of mobile devices with high memory
and computing power, a new type peer-to-peer communication
mode for MCC, called ad hoc cloudlet or mobile cloudlets,
has been introduced [6]. In a mobile cloudlet, a mobile device
can be either a service node or a computing service requester
(referred to as task node). When the connection of D2D is
available in the mobile cloudlets, task node can offload the
computing task to the cloudlet. The use of mobile cloudlets
leads to low communication costs and short transmission
delay, however, the intermittent D2D connections may quickly
become invalid due to network dynamics.

In mobile environment, remote cloud and mobile cloudlets
both have advantages and disadvantages for task offload-
ing. The keypoint of our work in this paper is to find
the compromised service mode by the use of remote cloud
and mobile cloudlets to minimize the cost and still ensure
good-enough quality of experience (QoE) [7]. As shown in
Table I, remote cloud based service mode has shortcoming
of high cost, while the efficiency of mobile cloudlets ori-
ented service mode is closely related with user’s mobility. To
solve the problem, the paper proposes a new task offloading
mode named “Opportunistic task Scheduling over Co-located
Clouds” (OSCC) which divides into three categories including
OSCC (back&forth), OSCC (one way-WiFi) and OSCC (one
way-Cellular Network). The OSCC mode outperforms remote
cloud mode and mobile cloudlets mode due to a better
tradeoff between cost and mobility support. Thus, the main
contributions of the paper include:

• We propose a new OSCC mode for task offloading to sup-
port high user mobility while saving the communication
cost as much as possible.

• We analyze the performance of the OSCC mode exten-
sively in terms of task duration and energy cost under dif-
ferent application scenarios. In this paper, the energy cost
mainly includes communication cost and processing cost.
The communication cost is consumed for task offloading,
computation result feedback. The communications can

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589247, IEEE
Transactions on Services Computing

UNDER REVIEW: IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, MAY 2015 2

TABLE I
A COMPARISON OF SERVICE MODES FOR TASK OFFLOADING

Structure Communication Style Cost Scalability Mobility Freedom of Computation
Support Service Node Duration

Remote Cloud Cellular Network High Coarse High N/A Medium
WiFi Low Coarse Low N/A Medium

Mobile Cloudlets D2D Low Coarse Low Low Low
Co-Located Clouds D2D Low Medium Medium Medium High

D2D and Cellular Network Medium Fine High High High
D2D and WiFi Low Fine High High High

be achieved by either D2D link or cellular network.
The processing cost consists of processing energy cost
in either clouds or local nodes. The optimal solution
of task allocation is given to achieve minimum energy
cost. Basically, it’s more energy efficient to allocate more
workloads to the service nodes with higher mobility and
larger computing capacities.

• We identify the design spectrum based on the mathe-
matical modes. The OSCC mode achieves the tradeoff
between remote cloud mode and mobile cloudlets mode.
Furthermore, we introduce two different kinds of task
allocation schemes, i.e., dynamic allocation and static
allocation. Under both mobile cloudlets mode and OSCC
mode, dynamic allocation exhibits lower cost than static
allocation.

• We provide some insights based on the performance
evaluation, and the following question is answered: given
a computation task, what is the optimal task partitioning
strategy, i.e., how many sub-tasks should be divided to
optimize the integrated performance in terms of task
duration and energy cost.

The rest of the paper is organized as follows. In Section II,
we describe the related work. We introduce the Opportunistic
task Scheduling over Co-located Clouds (OSCC) mode in
Section III, and then detail the mode in Section IV. We analyze
and optimize the mode in Section V. Numerical results are
shown in Section VI, followed by the conclusion and future
work in Section VII.

II. RELATED WORK

In this section, we survey the existing methods for task
offloading, which are classified into two categories: 1) based
on the remote cloud, 2) with the help of mobile cloudlets.

A. Remote Cloud

Along with the development of MCC, mobile users can
upload their computing tasks [8] [9] to the cloud and the
cloud will return the result to them after the completion
of the computing tasks [10] [11]. This is traditional task
offloading mode as shown in Fig. 1. Mobile devices can offload
computing related tasks to the cloud in two ways. One is
through WiFi for cost saving as shown in Fig. 1(a) while the
other is through expensive cellular network (e.g. 3G/4G/5G)
as shown in Fig. 1(b) in case WiFi is unavailable. Therefore,
a major question is: under what situation should the mobile
users offload the computing tasks to the cloud [12]? Previous

Cloud

 Task
WiFi AP

Upload

Download

(a)

Cloud

Task

Upload

Download

Cellular

Base Station

(b)

Fig. 1. Illustration of task offloading through remote cloud service mode:
(a) remote cloud service mode via WiFi; (b) remote cloud service mode via
cellular networks.

work introduced various offloading strategies. Clonecloud [13]
has proposed cloud-augmented execution by using cloned
virtual image as a powerful virtual unit. Kosta et al. [14] has
proposed a dynamic resource allocation and the framework
of parallel execution named ThinkAir. As for the parallel
task [15] allocation on the mobile devices, Li et al. [16]
designed a kind of heuristic offloading scheme. Different
from the existed research work, Lei et al. [17] first considers
the interactions between the offloading decision function of
MCC and the radio resource management function of wireless
heterogeneous network (HetNet), and the offloading decision
is made considering both the offloading gain and the cost of
using the HetNet when a Service Level Agreement (SLA) is
established with it. Under this framework, the mobile users
may enjoy the cloud services with good QoE regardless of
spectrum scarcity. However, these researches mainly takes
what, when and how to offload the task from the mobile to
cloud. In Flores et al. [18], the main consideration is how
to offload the tasks to the cloud in real situation. Provided
with stable support from the cellular network, smartphone can
offload the computing task to the remote cloud at any time
and any places. The advantage of this mode is high reliability
in the service supply while the disadvantage is the high cost
and delay of the cellular network [19].

B. Mobile Cloudlets

The concept of cloudlet was presented in Satyanarayanan
et al. [20] and then discussed in Miettinen et al. [21]. These

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589247, IEEE
Transactions on Services Computing

UNDER REVIEW: IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, MAY 2015 3

cloudlets are described as “data center in a box”. Nowadays,
discussions on cloudlets focus on the definition of the cloudlet
size, lifetime of cloudlets node life and available time to solve
a basic problem of the cloudlets: under what condition is it
feasible for the mobile cloudlets to provide mobile application
service [6]. Moreover, Wang et al. [22] has proposed a
kind of opportunistic cloudlet offloading mechanism based on
mobile cloudlets and Truong-Huu et al. [23] has proposed a
kind of stochastic workload distribution approach based on
mobile cloudlets. However, only when task node is connected
with service node, can the task offloading be allowed. After
the D2D connection is built up between the task node and
service node, the energy cost is economic since the content
delivery are carried out through the local wireless network (i.e.
WiFi and bluetooth). Zhou et al. [24] [25] firstly propose a
distributed information-sharing strategy with low complexity
and high efficiency. The limitation of mobile cloudlets lies
in the strict requirement on time because the task node and
service node shall have enough time to offload the computing
tasks and treat the feedback. Once the task node and service
node disconnect due to high user mobility and other factors
of network dynamics while task offloading is not completed,
the computing will fail.

III. OPPORTUNISTIC TASK SCHEDULING OVER
CO-LOCATED CLOUDS MODE

A. Motivation

Along with the rapid development of wireless communica-
tion and sensor technology, the mobile devices are equipped
with more and more sensors, as well as powerful comput-
ing and perception abilities. Under such background, the
crowdsourcing application emerges as a new type of mobile
computing: a large number of users utilize mobile devices
as basic sensing units to achieve distributed data, collection
and utilization of the perception tasks and data through
mobile Internet to complete even larger and more compli-
cated social perception tasks. The participants who complete
the complicated perception tasks with crowdsourcing do not
need professional skills. The crowdsourcing has succeeded
in the applications of positioning, navigation, urban traffic
perception, market forecasting, opinion mining, etc. which
are labor-intensive and time-consuming. Based on the vast
quantity of common users, it distributes tasks in a free and
voluntary manner to common users and let them complete
the tasks that they can never complete independently. The
idea of crowdsourcing also has broad applications for task
offloading [18] [26].

In this paper, the task offloading is realized by remote
cloud and mobile cloudlets. We consider that either traditional
remote cloud or mobile cloudlets exhibits a certain limitation
during task offloading, especially under limited bandwidth.
Given the application of image segmentation as a typical
scenario (see Section IV.A for details), the size of the picture
taken by a mobile device is generally large. However, the user
only care some specific region of interest (ROI). For example,
the interest of some users towards a whole picture is only the
face image appearing in the picture. Compared to the size of

the picture, the size of such ROI is much smaller. In order
to achieving energy saving, it’s beneficial to finish the task
of image segmentation locally. However, the transmission of
the whole picture to the cloud is a must using remote cloud
service mode. In comparison, the energy cost for offloading
the task to the cloud through the cellular network can be
eliminated in either mobile cloudlets service mode or OSCC
mode. However, the use of mobile cloudlets service mode
incurs the limit on user’s mobility. Thus, how to design an
optimal solution to minimizing energy cost while guaranteeing
high user’s QoE is a challenging issue.

B. OSCC mode

In mobile cloudlets, user mobility or network dynamics
make contacting time of two users short, which decreases
the probability of task completion. However, we assume that
the contacting time via D2D link is enough for a task node
to transmit content associated with computation to a service
node. When the task node and the service node disconnect,
the computing of the service node will still carry on until the
sub-tasks complete. We call the new service mode as OSCC.
A basic feature of OSCC is that the contact between the task
node and the service node can be either short or long instead
of limiting users’ mobility to guarantee the contact time for
task completion in conventional cloudlet based service mode.
We assume each computing task has a deadline, before which
the computing result should be returned from the service node
to the task node. Based on the location of the service node
upon the sub-task completion, there are three situations: i)
move close to the task node again within D2D communication
range, ii) cannot to connect with the task node directly by
D2D communications, but WiFi can still work, iii) in no way
to connect the task node by neither D2D links nor WiFi, but
the cellular network can still work.

Considering three situations above, the OSCC service mode
was classified into the following three categories.

• OSCC (back&forth): Wang et al. [22] have proposed a
task offloading method with the help of cloudlet, used
the statistical law of the node movement and calculated
the probability of the meeting of the task node and service
node for twice at least. In that way, before the completion
of the required computing tasks, once the service node
meets the task node again and the sub-tasks of the service
node have finished, the result of the sub-tasks can be
transmitted to the task node successfully. We call the task
offloading service mode by mobile cloudlets as “back-
and-forth service in cloudlet”. However, in this mode,
user mobility is always limited to ensure the second
meeting between the task node and the service node.
Even though, the mobility support of OSCC (back&forth)
mode is higher than remote cloud mode through WiFi.
Therefore, we mark the mobility support level of OSCC
(back&forth) as the mobility support should be leveled
as “Medium” in Table I.

• OSCC (one way-WiFi): Considering that the service node
may move another cell, where WiFi is available, for
example, the owner of the service node comes back to

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589247, IEEE
Transactions on Services Computing

UNDER REVIEW: IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, MAY 2015 4

his/her home, the sub-task result can be uploaded to the
cloud through WiFi. Generally, the data size of sub-task
result (Sresult

sub−tk) is smaller than the original size of the
data associated with the sub-task (Srecv

sub−tk). Let r denote
the rate of Sresult

sub−tk over Srecv
sub−tk. With the decrease of r,

OSCC (one way-WiFi) outperforms remote cloud service
mode more.

• OSCC (one way-Cellular Network): In this mode, the
economic way for computing task result feedback is not
available. That is, the service node moves to a place
without WiFi, it needs to upload the sub-task result to
the cloud through cellular network. As for the r value,
the small the r is, the better the effect of OSCC mode is.

A typical example is presented to explain the above men-
tioned three kinds of OSCC service modes, as shown in
Fig. 2. David has a computation-intensive task which cannot
be carried out only by his mobile phone. Within his D2D
communication range, the phones of David’s three friends,
Smith, Alex and Bob are all in idle state. So, David divides
the computing task into 3 sub-tasks and transmits them to the
three phones via D2D links. Smith is good friend of David
and moves together with David, so he always keeps contact
with David. After the completion of the task, the result of
his sub-task computation will be transmitted to David directly
through D2D connection. We assume Alex goes back to home
with available WiFi link, so OSCC (one way-WiFi) service
mode is used. Let’s assume that Bob has moved to another cell
before the completion of the sub-task, so he uploads the sub-
task result to the task node through OSCC (one way-Cellular
Network) service mode.

OSCC is quite efficient in some applications, for example,
the data size associated with computing task is huge but the
result data is relatively small. We consider the example of
image segmentation mentioned in Section III.A. Compared
with remote cloud service mode, OSCC mode can transmit the
whole picture through D2D which needs less bandwidth and
energy. Compared with mobile cloudlets service mode, OSCC
mode features a higher expand ability, as it does not require
the task node keep contact with service nodes through D2D
communications all the time or within a region, so it provides
high freedom for the task node and service node. Therefore,
OSCC mode which can be taken as the compromised mode
between remote cloud and mobile cloudlets, achieving more
flexibility and cost-effectiveness. It is known to us that the
paper firstly proposes the OSCC mode. In order to understand
how to use this new task offloading mode better, we establish
a mathematical model and provide solutions to some opti-
mization problems. As for the OSCC mode, here we give the
hypothesis as follows:

• The computing tasks can be divided into multiple sub-
tasks.

• According to different applications and the properties of
the task, we classify the division of the task into two
categories, i.e., cloned task and non-cloned task.

• Each service node will not accept the same cloned task
more than once.

• Packet loss is not considered during the transmission of

network data.

IV. OSCC MODE

Assume that there are M mobile nodes in the mobile cloud
computing network. Let N denote the total number of task
nodes and n denote the amount of sub-tasks for a task node.
Task node can communicate with service node only when they
are within the transmission radius R. That is, task node cni and
service node snj can communicate if ||Li(t) − Lj(t)|| < R,
Li and Lj are the positions of the two nodes at time t. The
node mobility is i.i.d. Typically, the inter-contact duration of
any two nodes follows exponential distribution with parameter
λ [27] [28]. Thus, λ reflects the average meeting rate of two
nodes. The probability without contact within ∆t time can be
calculated as P{t > ∆t} = e−λ∆t. The task node have a total
amount of computation task Q which can be divided into n
sub-tasks. Q can be denoted as:

Q =
n∑

i=1

xi (1)

where xi is the workload assigned to node i. Let’s assume
that service node sni have a per unit process speed νi and this
service node can process sub-task xi. Table II describes the
notations and default values used in this paper. In the following
section, task duration and energy cost of OSCC mode will be
analyzed.

A. Task Duration

The task duration consists of time consumed by two pro-
cedures, i.e., 1) the delivery of task contents, and 2) task
result feedback. For the sake of simplicity, we assume task
node knows the capabilities of service nodes. Let t∗ denote
the task duration. Considering the situation where a task is
computation-intensive and WiFi is unavailable, the delay of
local processing (denoted by Q/v, where v is processing speed
of the task node) is typically larger than t∗.

A task mainly consists of three components, i.e., processing
code, data and parameter(s). For a non-cloned task, a task node
divides the task into a certain number of sub-tasks. Each sub-
task includes a specific combination of processing code, data
and parameter(s). Typically, the data contents and parameters
between two sub-tasks are different while processing codes
probably are identical. For a cloned task, it can be copied
during task dissemination. It has intrinsic feature of random
parameter-oriented computation. To illustrate the difference
between a cloned task and a non-cloned task, the characteris-
tics of a cloned task are detailed as follows:

1) When a service node receives a cloned task, it can
further duplicate the cloned task and disseminate it to
other service nodes. However, a service node will not
accept the same cloned task more than once.

2) A cloned task typically includes processing code without
data and pre-assigned parameters. When a service node
receives the cloned task, it executes the processing
code with a stochastic parameter generated by the local
machine (i.e., the service node).

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589247, IEEE
Transactions on Services Computing

UNDER REVIEW: IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, MAY 2015 5

Base Station

Cloud

WiFi AP

Alex

Alex

Bob

Bob

Device-to-Device

Cellular

Download

Result

AlexBob

ad Download

Result

Base StationnBob

Offload Subtask Send Subtask

result

WiFi

WiFi AP
Alex

David

Smith

(a)

(b) (c)

Task Node

Service Node

Fig. 2. Illustration of the task offloading at OSCC mode: (a) Smith send sub-task result to David via D2D connection; (b) Bob send sub-task result to cloud
via 3G; (c) Alex send sub-task result to cloud via WiFi.

3) The computation complexity of executing a processing
code with various stochastic parameters for a bunch of
times is the major purpose for a task node to allocate
cloned tasks to numerous service nodes.

4) Though there exists high redundancy among various
cloned tasks in terms of processing code, the com-
putation activities are different in those service nodes
handling the cloned tasks.

We further give examples about non-cloned task and cloned
task in detail.

Given an example as shown in Fig. 3(a) about non-cloned
task, David is the task user (corresponding to task node)
and has 20 pictures, which have different images and contain
unique ROI in each picture. There are Bob, Alex, Smith and
Suri, four users who can reach David through D2D commu-
nications. As each person has a different smart phone and
specific computing power, the computing task shall be divided
into four sub-tasks through “dynamic allocation” which means
the four assigned sub-tasks are different from each other.
For example, Bob and Alex are allocated 6 and 7 images
respectively while Smith and Suri are assigned 3 pictures
and 4 pictures. When the picture is segmented, the ROI (i.e.,
computation result) will be sent to task node, which is owned
by David. In this example, all of the benefits are obtained
by David while Bob, Alex, Smith and Suri provide “free
services”. Practically, the intrinsic selfish feature of mobile
users constitutes the biggest obstacle for task offloading. For
example, most users intend to assign tasks to other users
while avoiding accepting the sub-tasks allocated to them. This
fact may result in failure of OSCC scenario, where most

users like to count on others to help them to execute the
tasks while reluctant to share computing capacity to others.
In order to solve the problem, an incentive mechanism can be
designed. For example, Bob contributes computing capacity
of his mobile phone to execute David’s sub-task. A certain
amount of incentive is sent to him. Likewise, Alex，Suri and
Smith get more or less rewards from David according to their
workload. Later, their incentives can be used to obtain favors
of speeding up their own computing tasks. However, the design
of an incentive mechanism to encourage various users for
collaborations on task offloading is not the focus of this paper.
We will address this issue in future work.

In the scenario shown in Fig. 3(b) about cloned task, the
task can be cloned for required times. For example, David has
a cloned task to be processed for 20 times while only Bob
and Alex are within his D2D communication scope. Thus,
David assigns Bob and Alex to process the cloned task for
9 times and 11 times, respectively. When Bob receives the
assignment, he handles the cloned task for 6 times by himself
while seeking the help from Smith to process the cloned
task for the left 3 times. Likewise, Alex can reach Suri via
D2D link, and allocates 4 times of cloned task executions to
Suri. In summary, the 20 times of cloned task executions are
allocated to Bob, Alex, Smith and Suri for 6, 7, 3 and 4 times,
respectively. In this example, when the service node receives
a cloned task, the cloned task can be copied and distributed to
other service nodes, which is similar with the epidemic model
in online social network. Regarding the energy cost caused by
the flooding of cloned task, task clone enables less energy cost
since more D2D opportunities are available during cloned task

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589247, IEEE
Transactions on Services Computing

UNDER REVIEW: IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, MAY 2015 6

TABLE II
VARIABLES AND NOTATION OF OSCC MODE

Variable Default Value Explanation

M 500 number of nodes in the cell

cni N/A a task node with index i and have computation task to be executed

snk N/A a service node with index k, which serves as available resource for computation offloading

N 45 the total number of task nodes in the cell

n 10 the amount of sub-tasks for a task node

K 450 number of total sub-tasks in the cell

X(t) N/A the number of service nodes at time t

Si (t) N/A the function of number of sub-tasks assigned for a task node cni at time t

λ 0.0001 average meeting rate of two nodes in the cell

rt,t+∆t(i) 1/0 whether sni assigns sub-task successfully within ∆t

θit,t+∆t(k) 1/0 whether service node snk gets assignment of sub-task for cni

t∗ N/A the average time to complete the computation of a whole task

t∗s N/A t* under computation clone mode

Q 200 size of total computation task

xi N/A size of sub-ask the serve node sni have

r 0.5 the ratio of Sresult
sub−tk and Srecv

sub−tk

Ecell
n→c 2 the per unit communication cost from task node to cloud via cellular network

Ecell
c→n 2 the per unit communication cost from cloud to task node via cellular network

Ecloud
proc 0.1 the per unit energy cost for computation tasks processed in cloud

ED2D 1 the per unit communication cost from task node to service node

Enode
proc (k) 0.2 the per unit energy cost for service node snk to process a sub-task locally

ρ 0.001 the probing cost per time unit

td 4000 deadline for computation task completion time

νi N/A per unit process speed of service node sni

CCloud N/A the total energy cost for computation task executed in remote cloud

Ccloudlet N/A the total energy cost for computation task executed in CCS mode

COSCC N/A the total energy cost for computation task executed in OCS mode

ω 0.5 a weight factor which indicates the emphasis

distribution than the case of non-cloned task offloading.

B. Energy Cost

The energy cost is mainly consists of communication cost
and processing cost. The communication cost includes two
parts, the first one is consumed for offloading task result
to cloud (denoted by Ecell

n→c), the other part is for cloud to
feedback computation result to task node (denoted by Ecell

c→n).
ED2D denotes the energy cost via D2D link. The processing
cost includes processing energy cost in cloud Ecloud

proc and
in node Enode

proc . Considering the heterogeneous capability of
service nodes in terms computing power, we give two methods
to distribute the nodes of sub-tasks:

• Static Allocation: As the task node usually has no knowl-
edge about the processing capacity of the service node,
we assume that the task node does not differentiate the
computing capability of all the service nodes, that is, they
have the same processing speed vi and the same amount
of workload xi = Q/n. The task node will distribute
the sub-tasks to the service nodes evenly. However, the
shortcoming of such assumption is that the service node
with largest delay to submit computation result will cause
the increase of the task duration.

• Dynamic Allocation: Practically, in order to achieve
higher delay performance, the task node should not ignore
the heterogenous capabilities of service nodes. This mo-
tivates us to propose “dynamic allocation” strategy. With
the information of the computing capability of various
service nodes, we can distribute the sub-tasks in a more
intellectual way. For example, if the service node has
stronger computing power, it will receive a sub-task with
a larger workload.

V. ANALYSIS AND OPTIMIZATION FOR OSCC MODE

Different service modes have both advantages and disad-
vantages and we hope to achieve flexible tradeoff among
various modes to decrease energy cost and delay while meeting
the requirements of user’s QoE. In the following section,
the delay and energy performance will be analyzed, then the
optimization framework will be given.

A. Analysis for Task Duration in OSCC Mode

1) Task Duration in OSCC mode with non-cloned task:
First, let’s analyze the task duration in the case that the
tasks cannot be cloned. The task duration consists of time
consumptions from two main parts, i.e., sub-task distribution,
and computation execution. Sub-task distribution phase is

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589247, IEEE
Transactions on Services Computing

UNDER REVIEW: IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, MAY 2015 7

David

Bob
Alex

Smith Suri

Task Node

Service Node

Non-cloned

TaskDavid

Bob
Alex

Smith Suri

Task Node

Service Node

Non-cloned

Task

(a)

Cloned Task

David

Bob

Alex

Smith

Suri

Cloned Task

DavidD idDa

BobBob

AlexAl

Smith

Suri

Allocate 9 times of

cloned task executions

Allocate 11 times of

cloned task executions

6 times of cloned task

executions locally

Allocate 3 times of

cloned task executions

3 times of cloned task

executions locally
4 times of cloned

task executions locally

Allocate 4 times of

cloned task executions

7 times of cloned task

executions locally

(b)

Fig. 3. Illustration of task offloading in opportunistic co-located clouds
service: (a) non-cloned task; (b) cloned task.

the phase when the task node assigns sub-tasks to service
nodes, including transmitting the contents associated with sub-
tasks to the service nodes. Typically, computation delay is
much smaller than sub-task distribution delay. For the sake
of simplicity, only sub-task distribution delay is considered.
Let ∆t denote a very small time interval, within which there
is only one contact at most. As shown in Table II, if rt,t+∆t(i)
is 1, it means that a task node mi successfully meets a service
node and assigns a sub-task within ∆t, vice versa. Thus,
rt,t+∆t(i) can be defined as follows:

rt,t+∆t(i) =

{
1 mi assigns sub-task successfully within ∆t,

0 otherwise.
(2)

Since the inter-contact duration of any two nodes follows
exponential distribution, the probability that mi assigns a sub-
task successfully can be expressed as follows:

P{rt,t+∆t(i) = 1} = 1− (e−λ∆t)X(t). (3)

where X(t) is the number of service node to the time t.
Its expectation can be calculated as: E(rt,t+∆t(i)) = 1 −
(e−λ∆t)X(t), so the number of service nodes which have no
sub-task assignments can be computed as:

X(t+∆t) = X(t)−
N∑
i=1

rt,t+∆t(i). (4)

We can obtain the expectation about equation (4):

E(X(t+∆t) = E(X(t))−NE(rt,t+∆t(i)). (5)

Letting ∆t be close to 0, using the theory of limit, we can
obtain the derivation of E(X(t)) as follows

E′(X(t)) = lim
∆t→0

E(X(t+∆t)− E(X(t))

∆t
= −NλE(X(t)).

(6)
By solving the ordinary differential equation (ODE) (6), we
can finally get the function E(X(t)) as:

E(X(t)) = E(X(0))e−Nλt. (7)

By solving the inverse function of equation (7), we can obtain
the average time of task duration (denoted by t∗) as follows:

t∗ =
ln M−N

E(X(t∗))

Nλ
. (8)

Correspondingly, E(X(t∗)) = M − Nn. Aforementioned
analysis is for the case that all of the computations are
considered.

2) Task Duration in OSCC mode with cloned task: Now we
analysis for the OSCC mode with cloned task. At beginning
of our analysis, for the sake of simplicity, let us just consider
only one task node. Let S(t) denote the number of service
nodes which have sub-tasks at time t. Let δt,t+∆t(mk) denote
whether mk gets sub-task assignment within ∆t. We can
obtain:

E(S(t)) =
S(0)MeMλt

M − S(0)− S(0)eMλt
. (9)

where S(0) = 1. Then, the task duration t can be calculated
as follows:

t =
ln(S(t)(M−S(0))

S(0)(M−S(t)))

Mλ
. (10)

Furthermore, let’s assume that there are N task node, and each
sub-task can be cloned. Let Si(t) denote the number of service
nodes which have sub-task assignments of task node mi to the
time t, then we can calculate Si(t+∆t) as follows:

Si(t+∆t) = Si(t) +

M−NSi(t)∑
k=1

θit,t+∆t(k). (11)

where θit,t+∆t(k) denoted whether service node mk gets
assignment of sub-task for mi. As for equation (11), utilizing
the methods similar to equation (5) (6), we can obtain:

E′(Si(t)) = (M −NE(Si(t)))λE(Si(t)). (12)

Then, by solving ODE (12), we can compute E(Si(t)) as:

E(Si(t)) =
eλMtM

M −N + eλMtN
. (13)

Finally, by solving the inverse function of equation (13), we
obtain the average time of the task duration for a single task
(denoted by t∗s) as follows:

t∗s =
ln (

E(Si(t
∗
s))(M−N)

M−NE(Si(t∗s))
)

Mλ
. (14)

Correspondingly, E(Si(t
∗
s)) = n.

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589247, IEEE
Transactions on Services Computing

UNDER REVIEW: IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, MAY 2015 8

B. Analysis for Energy Cost in Remote Cloud mode, Mobile
Cloudlets mode and OSCC mode

In this section, we analyze the energy cost performance
for various service mode. Let’s consider a worst case where
WiFi is not available. For simplicity, it is supposed that there
is only one task node and its total computing quantity is Q
which can be divided into n sub-tasks. Since static allocation
can be deemed as the extreme case of dynamic allocation,
let’s focus on the case of dynamic allocation. We divide the
whole energy cost chain into three phases, i.e., task associated
contents offloading, execution of sub-tasks, and computation
result feedback. Then, the total cost of remote cloud based
service mode can be calculated as:

Ccloud =
n∑

i=1

(Ecell
n→cxi + Ecloud

proc xi + rEcell
c→nxi),

= Q(Ecell
n→c + Ecloud

proc + rEcell
c→n).

(15)

In mobile cloudlets service mode, the major energy cost
comes from the use of D2D communications and periodical
detection of the surrounding nodes. Then, the total cost at
mobile cloudlets mode can be calculated as:

Ccloudlet =
n∑

i=1

(ED2Dxi + Enode
proc (i)xi + rED2Dxi) +Mρt∗,

= Q(1 + r)ED2D +

n∑
i=1

Enode
proc (i)xi +Mρt∗.

(16)
Let X⃗ = {x1, x2, . . . , xn} denote the solution of task alloca-
tion, thus minimizing the cost can be specified as the following
optimization problem:

minimize
X⃗

Ccloudlets

subject to
n∑

i=1

xi = Q

xi ≥ 0 i = 1, 2, . . . , n.

(17)

The optimization problem is a linear programming problem
and can be solved by using a conventional solver, i.e., Matlab.

Considering the mobility of a service node, it may move
to some region without WiFi. In this case, the computation
result feedback can be classified into two situations: (1) the
service node moves back to the proximity of task node and
D2D connection is available. Under this situation, D2D link
can be used to deliver the result of sub-tasks, which is the case
of OSCC (back&forth). (2) otherwise, the cellular network is
the only choice to transmit the result of sub-tasks, which is
the case of OSCC (one way-Cellular Network).

We first give the probability Pi, which denotes the chance
that service node sni meets task node twice. Let ti,1 denote
the time interval when task node meets service node sni

for the first time. Let ti,2 denote the time interval between
the first meeting and the second meeting for task node and
service node. Since the time interval follows exponential
distribution and i.i.d., Let ti denote td − xi/νi. According

to total probability theorem,

P (ti,1+ti,2 ≤ td) =

∫ ti

0

P (ti,1+ti,2 ≤ td|ti,1 = x)λe−λxdx.

(18)
where P (ti,1 + ti,2 ≤ td|ti,1 = x) = P (ti,2 ≤ td − x) =
1− e−λ(td−x). Therefore, the Pi = P (ti,1 + ti,2 ≤ td) can be
calculated as:

P (ti,1 + ti,2 ≤ td) =

∫ ti

0

(1− e−λ(td−x))λe−λxdx,

= 1− e−λti − λtie
−λti .

(19)

Then, the cost can be calculated as

COSCC =
n∑

i=1

(xiED2D + Enode
proc (i)xi + rxiPiED2D+

rxi(1− Pi)(E
cell
n→c + Ecell

c→n)) +Mρt∗.
(20)

Thus, the minimum cost can be computed as:

minimize
X⃗

COSCC

subject to
n∑

i=1

xi = Q

xi ≥ 0 i = 1, 2, . . . , n.

(21)

The optimization problem is hard to solve, we divide this
problem in two stages. First we maximize P , second we
minimize the cost in OCS mode.

Generally, the cost for the service node to offload the
computing task to the cloud or the cloud feedbacks the result
to the task node through cellular network is more than the
cost of D2D. Therefore, considering the energy cost and
delay in different situations, a compromising method is desired
according to the special applications.

• Remote Cloud: If the computing task is highly sensitive
to delay and users can afford high cost to reach a higher
QoE, using remote cloud (cellular network) is not a bad
choice.

• Mobile Cloudlets: If the task node is very sensitive to
the communication cost and the service node moves
in a small range, then the use of mobile cloudlets is
recommended.

• OSCC: If r is very small, and the service nodes require
maximum node freedom, choosing OSCC is a best solu-
tion.

Now, we give the algorithm 1 about how to chose remote
cloud, mobile cloudlets and OSCC.

C. Optimization Framework

Now, we will give the joint optimization for time delay
and energy cost. Due to the different impact of time and
energy cost, we introduce a weight factor, denoted as ω, which
indicates the emphasis on either time or energy cost. Thus
minimizing the time and energy cost of a single task node can
be specified as the following problem:

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589247, IEEE
Transactions on Services Computing

UNDER REVIEW: IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, MAY 2015 9

Algorithm 1 C choosing algorithm
begin
notation
r denotes the ratio of Sresult

sub−tk and Srecv
sub−tk;

λ denotes average meeting rate ;
C is remote cloud or mobile cloudlets or OSCC;

initialization
if situation have stable WiFi then

use remote cloud through WiFi;
end if
if r > 1 and delay sensitive then

use remote cloud through cellular network;
end if
if λ is small and cost sensitive then

use mobile cloudlets;
end if
if r < 1, λ is large and maximum node freedom then

use OSCC;
end if

Return C;

minimize
X⃗

t∗ + ω · COSCC

subject to
n∑

i=1

xi = Q

xi ≥ 0 i = 1, 2, . . . , n.

(22)

We use genetic algorithms to solve above problem. A
genetic algorithm is a heuristic algorithm based on the evo-
lutionary theory of genetics and natural selection and can
solve this problem. The genetic algorithm is mainly to use
the heuristic method to search for the optimal xi.

VI. PERFORMANCE EVALUATION

In this section, the proposed OSCC mode will be evaluated.
We set the meeting rate λ is 0.00004 to 0.00032 per second,
M is within the range from 300 to 3000, and ρ is set to be
0.001 per second by default based on the previous work [29].

We considers two aspects for the experiment: (1) What kind
of impact do task allocation strategies pose on task duration
and energy cost? According to the feature of a task, we classify
it into non-cloned task and cloned task. The task allocation
strategies can be static and dynamic allocation. (2) In order to
evaluate our methods, we compare our methods with closely
related work. In Chun et al. [13], remote cloud service mode
is the major concern. In Li et al. [6], mobile cloudlets was
introduced in detail.

A. Task Duration

1) The time consumed by allocating all the sub-tasks with
non-cloned task: Because of the relationship among X(t), N ,
M , λ and n, we need to evaluate the impact of each parameter
on the model. In Fig. 4(a), we fix M to 500; let n be 10,
and set λ to 0.0001, while varying N with various values,
including 30, 35, 40 and 45. As shown in Fig. 4(a), task
duration increases when N becomes larger. Note that, here,
the task duration is the time when all of the users with task
achieve their goal of distributing all of the sub-tasks to those
mobile users who have no task assignments. From Fig. 4(a),

0 200 400 600
0

100

200

300

400

500

t: Time(sec)

X
(t

):
 S

er
vi

ce
 n

od
e

nu
m

be
r

N= 30
N= 35
N= 40
N= 45

(a)

0 200 400 600
0

500

1000

1500

t: Time(sec)

X
(t

):
 S

er
vi

ce
 n

od
e

nu
m

be
r

M= 500
M= 750
M= 1000
M= 1250

(b)

0 500 1000 1500
0

100

200

300

400

500

t: Time(sec)

X
(t

):
 S

er
vi

ce
 n

od
e

nu
m

be
r

λ= 0.00004
λ= 0.00008
λ= 0.00016
λ= 0.00032

(c)

0 200 400 600
0

100

200

300

400

500

t: Time(sec)

X
(t

):
 S

er
vi

ce
 n

od
e

nu
m

be
r

n= 5
n= 7
n= 9
n= 11

(d)

Fig. 4. Evaluation on X(t). (a) The impact of N on X(t); (b) The impact
of M on X(t); (c) The impact of λ on X(t); (d) The impact of n on X(t).

we also can observe that X(0) is smaller than M . It is because
N users already have tasks, thus X(0) is equal to M −N .

In Fig. 4(b), we fix N to 45; n to 10; and λ to 0.00001, while
varying M with 500, 750, 1000, and 1250, respectively. As
shown in Fig. 4(b), when M = 1250, the task completion time
is minimum among all of the scenarios compared. It is because
there are more chances for task users to meet a service node
to offload task to the node in a shorter period. In comparison,
when M = 500, M − N service nodes are not enough for
consequent task offloading process, and thus causing a larger
task duration.

In Fig. 4(c), we fix M to 500; N to 45; n to 10, while
varying λ with 0.00004, 0.00008, 0.00016, 0.00032, respec-
tively, in order to obtain the impact of λ on t and X(t). As
shown in Fig. 4(c), bigger λ represents larger probability for
a mobile user to meet with a task node, facilitating the set of
sub-tasks to be distributed faster. With the decrease of λ, the
task duration increases.

In Fig. 4(d), we fix M to 500; λ to 0.0001; and K to 450,
while varying n with 5, 7, 9, 11, so the N is K/n . As shown in
Fig. 4(d), task duration increases when n becomes larger. It is
because when n increases with a fix number of total sub-tasks
N is decreased. This indicates that, under the fixed M and λ,
the smaller n and the bigger N promote the task completion
time. From Fig. 4(d), we also can observe that X(0) is not
equal with each other. It is because when n changes, the N
also changes. Similar with Fig. 4(d), X(0) is equal to M−N .

In Fig. 5(a), we fix M to 500; let K to 450; while varying λ
with various values, including 0.00004, 0.00008, 0.00016 and
0.00032. As shown in Fig. 5(a), as total sub-tasks is fixed, task
completion time decreases when N becomes larger. However
when N reach 40, this benefit is not distinctive. We also can
see that the benefit of increasing N is not significant when the
λ is high.

In Fig. 5(b), we fix λ to 0.0001; let K set to 450; while
varying M with various values, including 500, 750, 1000 and

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589247, IEEE
Transactions on Services Computing

UNDER REVIEW: IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, MAY 2015 10

10 20 30 40 50
0

2000

4000

6000

N: Task node number

t* : T
as

k
du

ra
tio

n
(s

)

λ= 0.00004
λ= 0.00008
λ= 0.00016
λ= 0.00032

(a)

10 20 30 40 50
0

500

1000

1500

2000

2500

N: Task node number

t* : T
as

k
du

ra
tio

n
(s

)

M= 500
M= 750
M= 1000
M= 1250

(b)

Fig. 5. Evaluation on X(t) and t∗. (a) t∗-different λ with varying N ; (b)
t∗-different M with varying N .

1250. As shown in Fig. 5(b), like Fig. 5(a), as total sub-tasks is
fixed, task duration decreases when N becomes larger. From
Fig. 5(b), We also can see that the benefit of increasing N is
not significant when M reaches 1000.

0 50 100
0

2

4

6

8

10

t: Time(Sec)

S i(t
):

 R
ec

ei
ve

 s
ub

−
ta

sk
s

nu
m

be
r

N= 30
N= 35
N= 40
N= 45

(a)

0 50 100
0

2

4

6

8

10

t: Time(Sec)

S i(t
):

 R
ec

ei
ve

 s
ub

−
ta

sk
s

nu
m

be
r

M= 500
M= 750
M= 1000
M= 1250

(b)

0 100 200 300
0

2

4

6

8

10

t: Time(sec)

S i(t
):

 R
ec

ei
ve

 s
ub

−
ta

sk
s

nu
m

be
r

λ= 0.00004
λ= 0.00008
λ= 0.00016
λ= 0.00032

(c)

Fig. 6. Evaluation on Si(t). (a) The impact of N on Si(t); (b) The impact
of M on Si(t); (c) The impact of λ on Si(t).

2) The time consumed by allocating all the sub-tasks with
cloned task: In Fig. 6(a), we fix M to 500; let n be 10, and set
λ to 0.0001, while varying N with various values, including
30, 35, 40 and 45. As shown in Fig. 6(a), the impact of N on
Si(t) is not distinctive.

In Fig. 6(b), we fix N to 45; n to 10; and λ to 0.0001, while
varying M with 500, 750, 1000, and 1250, respectively. As
shown in Fig. 6(b), bigger M represents more chances for a
mobile user to meet with a task node. Thus, when M is equal
to 1250, Si(t) increases fastest to reach its maximum of 10.

In Fig. 6(c), we fix M to 500; N to 45; n to 10, while vary-
ing λ with 0.00004, 0.00008, 0,00016, 0.00032, respectively.
As shown in Fig. 6(c), bigger λ represents larger probability
for a mobile user to meet with a task node. Thus, when λ is
equal to 0.00032, Si(t) increases fastest to reach its maximum
of 10.

In Fig. 7(a), we fix M to 500; let K be equal to 450; we vary
λ with different values, including 0.00004, 0.00008, 0.00016
and 0.00032. In Fig. 7(b), we fix λ to 0.0001; let K be equal

10 20 30 40 50
0

100

200

300

400

N: Task node number

t s* : T
as

k
du

ra
tio

n
(s

)

λ= 0.00004
λ= 0.00008
λ= 0.00016
λ= 0.00032

(a)

10 20 30 40 50
0

50

100

150

N: Task node number

t s* : T
as

k
du

ra
tio

n
(s

)

M= 500
M= 750
M= 1000
M= 1250

(b)

Fig. 7. Evaluation on Si(t) and t∗s . (a) t∗s -different λ with varying N ; (b)
t∗s -different M with varying N .

to 450; We vary M with different values, including 500, 750,
1000 and 1250.

As shown in Fig. 7, compared with Fig. 5, the task duration
t∗s of Fig. 7 is far smaller than the task duration t∗ of Fig. 5
under the condition of same N and λ or same N and M .
It is because task clone is allowed. When task node meet an
service node, the service node becomes task node. In other
words, the number of task node becomes larger. However, if
the task clone is not allowed, the number of task node stay
the same.

0 0.5 1 1.5

x 10
−4

0

500

1000

1500

2000

2500

λ : Average meeting rate

t* :
T

as
k

du
ra

tio
n

(s
)

Mobile Cloudlets
OSCC/non−cloned task
OSCC/cloned task

(a)

0 1 2 3 4

x 10
−4

0

500

1000

1500

2000

2500

3000

λ : Average meeting rate
t* :T

as
k

du
ra

tio
n

(s
)

n= 5
n= 7
n= 9
n= 11

(b)

Fig. 8. Evaluation on task duration. (a) Compared the task completion time
of mobile cloudlets and OSCC mode; (b) OSCC mode task duration-different
n with varying λ

3) Task Duration in mobile cloudlet mode and OSCC mode:
Fig. 8(a) has compared the task duration of OSCC mode and
mobile cloudlets. From the picture, in the situation that the
OSCC can be cloned with a fixed λ, the task duration is
the shortest and the task duration of OSCC is shorter than
mobile cloudlets. Along with the increase of λ, OSCC presents
a better delay performance, because the increase of λ, the
task node meets the service node more frequently. As for
mobile cloudlets, the task duration decreases gradually from a
small λ (for example, from 0.00002 to 0.0001). However, as
λ continues to grow, mobile cloudlets task duration starts to
increase because of shortened contacting time which leads to
inadequate contacting time for the offloading, implementation
and feedback of sub-tasks.

As shown in Fig. 8(b), when λ is larger than 0.0003, the
performance of OSCC starts to not be distinctive. It is because
the contact duration is too short to guarantee a successful sub-
task offloading.

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589247, IEEE
Transactions on Services Computing

UNDER REVIEW: IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, MAY 2015 11

0 0.5 1 1.5
0

200

400

600

800

1000

1200

1400

r : The ratio of S
sub−tk
result and S

sub−tk
recv

C
 :

E
ne

rg
y

co
st

Cloud
OSCC (E

D2D
= 0.5)

OSCC (E
D2D

= 1.0)

OSCC (E
D2D

= 1.5)

(a)

0 0.5 1 1.5

x 10
−4

400

500

600

700

800

900

λ : Average meeting rate

C
 :

E
er

gy
 c

os
t

Mobile Cloudlets
OSCC/non−cloned task
OSCC/cloned task

(b)

Fig. 9. Evaluation on energy cost. (a) Compared the cost between remote
cloud and OSCC mode; (b) Compared the cost between mobile cloudlets and
OSCC.

B. Energy Cost in Remote Cloud mode, Mobile Cloudlets
mode and OSCC Mode

Fig. 9(a) has compared the energy cost in the mode of
remote cloud and OSCC. Four curves means the energy cost
in the mode of remote cloud and the energy costs in the mode
of OSCC with different r. As Ecell

n→c, E
cell
c→n > ED2D, when

r < 1, OSCC is smaller than remote cloud under normal
circumstances. However, when r > 1, as r increases, The
memory consumption in OSCC mode also increases and its
increasing speed is faster than remote cloud increasing speed.
Moreover, when ED2D increases, the cost of OSCC becomes
large.

In Fig. 9(b), the costs of mobile cloudlets and OSCC are
compared with each other. In these three methods, OSCC has
appeared smaller energy cost than the other methods under the
situation that the computing task can be cloned (i.e., cloned
task) when the λ value is fixed, because OSCC can complete
the sub-tasks more quickly when it can be cloned. When
0.00002 ≤ λ ≤ 0.00014, the cost of mobile cloudlets is less
than OSCC when it cannot be cloned (i.e., non-cloned task),
because OSCC may needs to upload sub-task results to the
cloud when the computing task cannot be cloned but mobile
cloudlets saves energy accordingly. When λ increases, the
contacting time gets shorter, possibly leading to the failure of
implementing sub-tasks with mobile device. Therefore, OSCC
is better than mobile cloudlets in case of non-cloned task when
λ ≥ 0.00014.

C. Optimization Framework

In this subsection, we consider the impact of static and dy-
namic allocation on the experimental results. The performance
of non-cloned task and clone task is also evaluated. Genetic
algorithm is used to solve the optimization problem in terms of
energy cost and task duration. In our experiments, The weight
factor ω about task duration and energy cost is set to be 0.5.

In Fig. 10(a) shows the comparison of cost in term of mobile
cloudlets with static allocation and dynamic allocation. As
shown in the Fig. 10(a), the dynamic allocation is almost
smaller than static allocation, this is because the task node
knows each service node processing cost, so task node send
large task to the service node which have lower processing
cost. when λ < 0.00005 and λ > 0.00017, the benefit of
dynamic allocation is not significant.

0 1 2

x 10
−4

400

500

600

700

800

λ : Average meeting rate

C
: E

ne
rg

y
co

st
 in

 C
lo

ud
le

ts

Static Allocation
Dynamic Allocation

(a)

node
= 0.1

(b)

0 1 2

x 10
−4

200

400

600

800

1000

λ : Average meeting rate

C
: E

ne
rg

y
co

st
 in

 O
SC

C

Static/non−cloned task
Static/cloned task
Dynamic/non−cloned task
dynamic/cloned task

(c)

10 20 30 40 50
430

435

440

445

450

n: sub−task number

t* +
ω

 ⋅
C

O
S

C
C

ω= 0.5

10 20 30 40 50
720

740

760

780

n

C

(d)

Fig. 10. Evaluation on the optimization framework. (a) Compared the cost
between static allocation and dynamic allocation in mobile cloudlets; (b)
The impact of Enode

proc on energy cost in OSCC mode; (c) Compared the
cost between static allocation and dynamic allocation in OSCC mode; (d)
Conjunctive minimization of time and energy cost.

In Fig. 10(b) shows the impact of Enode
proc on energy cost

in terms of static allocation and dynamic allocation. In order
to verify the effect of dynamic allocation, random value is
applied. The circle represents the energy performance of static
allocation where Enode

proc is fixed to 0.1, which represents the
same processing capability of service nodes. while the values
of data points at X-axis mean the value span where practical
value is generated. For example, 0.2 in X-axis means the
practical value of Enode

proc is obtained between 0.01 and 0.19
in a random fashion; 0.01 in X-axis means the practical value
varies from 0.09 to 0.11. As shown in Fig 10(b), the larger is
the interval, the better performance of dynamic allocation can
be obtained.

In Fig. 10(c) shows the comparison of cost in tern of OSCC
mode with static allocation and dynamic allocation under
non-cloned task and cloned task. We can see that dynamic
allocation with cloned task is the smallest energy cost. With
the increase of λ, energy cost of all of the compared schemes
decreased. In the scheme of dynamic with non-cloned task, the
energy cost is decreased with fastest speed. It is because the
value of λ have more effect on non-cloned task than cloned
task. When λ reaches 0.00018, the impact of duplicating task
becomes smaller. It is because the meeting times increase in
unit time slot, and thus speeding up the distribution of sub-
tasks.

In Fig. 10(d) shows the conjunctive minimization of task
duration and energy cost. we set ω = 0.5. In the embedded
figure in Fig. 10(d), with the increase of sub-task number n
and when n < 35, the cost decreases. It is because the amount
of sub-task allocated to service nodes becomes smaller when
total task Q is fixed and more sub-task communication with
D2D. However, since the number of sub-tasks is increase, it
need more time to deliver the task content and the periodically

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589247, IEEE
Transactions on Services Computing

UNDER REVIEW: IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. YY, MAY 2015 12

probing, so the task duration increase. Even more, when n >
35, the cost increase since the periodically probing excessive
cost due to the task duration. So there exists a trade-off, we try
to decrease time and energy cost by obtaining the solution to
the optimal function. As shown from Fig. 10(d), using genetic
algorithms, when n is equal to 26, the optimized performance
is achieved.

VII. CONCLUSION AND FUTURE WORK

A. Conclusion

With the explosive increase of mobile devices and data
traffics, 5G network system needs to realize the resource
utilization more efficiently through novel mobile network
architecture designs. The task offloading is an efficient solution
to cope with the growing mobile traffic and the associated
computation demand. In this paper, by the use of remote cloud
and mobile cloudlets, we propose a new task offloading mode,
the Opportunistic task Scheduling over Co-located Clouds
(OSCC) mode. In the design spectrum of OSCC, it can
be deems as a compromised mode between remote cloud
and mobile cloudlets to achieve high flexibility and better
performance in terms of energy and delay. To the best of our
knowledge, this paper is the first to propose OSCC mode.
In order to understand how to use this new task offloading
mode better, we establish a mathematical model and provide
solutions to some optimization problems.

B. Future Work - Workflow Scheduling

In this paper, we only consider that task consists of a bag of
sub-tasks, while there are no dependencies among those sub-
tasks. In future work, we will investigate the task including a
series of interactive sub-tasks, generally expressed as directed
acyclic graph G(V,E). The vertices V expresses a series of
tasks and edges E expresses the interaction or dependency
in sub-task pairs. The distribution of tasks on the mobiles
is mentioned at Gao et al. [30] and a kind of energy-aware
offloading strategy is proposed based on cloudlet. MuSIC [31]
presents an optimal service allocation mechanism for location
and time-sensitive tasks in cloud and cloudlet environments.
For task scheduling in cloud, Chun et al. [13] has proposed a
cost adaptive virtual machine management technology which
requires lower time and energy cost. As for the computation-
intensive task, such as resource scheduling for multimedia con-
tent driven, a kind of resource sensitive moderate scheduling
algorithm with higher performance for the clustering of cloud
resources and tasks at Vasile [32]. Ge et al. [33] proposed
5G wireless hackhaul networks to balance user task and BSs
task in a distributed network architecture. Moreover, it is the
first paper that the task scheduling and energy efficiency opti-
mization was derived by a user accessing Markov chain model
for random cellular networks [34]. However, all above existing
work do not consider the workflow scheduling in hybrid cloud
and mobile cloudlets environments, so we will address the
issue in the future work regarding worflow scheduling and
task allocation in mobile cloudlets and cloud.

ACKNOWLEDGEMENT

This work was supported by the National Natural Science
Foundation of China (grant No. 61572220). Dr. YixueHao’s
work was supported by the Fundamental Research Funds for
the Central Universities’, HUST: CX-15-055.

REFERENCES

[1] V. Leung, T. Taleb, M. Chen, T. Magedanz, L.-C. Wang, and R. Tafa-
zolli, “Unveiling 5G wireless networks: emerging research advances,
prospects, and challenges [guest editorial],” IEEE Network, vol. 28,
no. 6, pp. 3–5, 2014.

[2] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing:
A survey,” Future Generation Computer Systems, vol. 29, no. 1, pp.
84–106, 2013.

[3] L. Lei, Y. Zhang, X. Shen, C. Lin, and Z. Zhong, “Performance analysis
of device-to-device communications with dynamic interference using
stochastic petri nets,” IEEE Transactions on Wireless Communications,
vol. 12, no. 12, pp. 6121–6141, 2013.

[4] B. Han, P. Hui, V. A. Kumar, M. V. Marathe, J. Shao, and A. Srinivasan,
“Mobile data offloading through opportunistic communications and
social participation,” IEEE Transactions on Mobile Computing, vol. 11,
no. 5, pp. 821–834, 2012.

[5] X. Wang, M. Chen, Z. Han, D. O. Wu, and T. T. Kwon, “TOSS:
Traffic offloading by social network service-based opportunistic sharing
in mobile social networks,” in INFOCOM, 2014 Proceedings IEEE.
IEEE, 2014, pp. 2346–2354.

[6] Y. Li and W. Wang, “Can mobile cloudletss support mobile applica-
tions?” in INFOCOM, 2014 Proceedings IEEE. IEEE, 2014, pp. 1060–
1068.

[7] K. Zheng, X. Zhang, Q. Zheng, W. Xiang, and L. Hanzo, “Quality-
of-experience assessment and its application to video services in LTE
networks,” IEEE Wireless Communications, vol. 22, no. 1, pp. 70–78,
2015.

[8] D. Candeia, R. Araujo, R. Lopes, and F. Brasileiro, “Investigating
business-driven cloudburst schedulers for e-science bag-of-tasks appli-
cations,” IEEE Second International Conference on Cloud Computing
Technology and Science (CloudCom), 2010, pp. 343–350.

[9] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro, J. Sauvé,
F. A. Silva, C. O. Barros, and C. Silveira, “Running bag-of-tasks applica-
tions on computational grids: The mygrid approach,” IEEE International
Conference on Parallel Processing (ICPP), 2003, pp. 407–416.

[10] T. Taleb and A. Ksentini, “Follow me cloud: interworking federated
clouds and distributed mobile networks,” IEEE Network, vol. 27, no. 5,
pp. 12–19, 2013.

[11] H. Flores and S. Srirama, “Mobile code offloading: should it be a
local decision or global inference?” in Proceeding of the 11th annual
international conference on Mobile systems, applications, and services.
ACM, 2013, pp. 539–540.

[12] M. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to
offload? the bandwidth and energy costs of mobile cloud computing,”
in INFOCOM, 2013 Proceedings IEEE. IEEE, 2013, pp. 1285–1293.

[13] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings of
the sixth conference on Computer systems. ACM, 2011, pp. 301–314.

[14] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in INFOCOM, 2012 Proceedings IEEE. IEEE,
2012, pp. 945–953.

[15] W. Cirne, F. Brasileiro, L. Costa, D. Paranhos, E. Santos-Neto, N. An-
drade, C. D. Rose, T. Ferreto, M. Mowbray, R. Scheer et al., “Scheduling
in bag-of-task grids: The pauá case,” in IEEE Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD) 2004, pp.
124–131.

[16] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent tasks
for computation-intensive applications in mobile cloud computing,” in
Computer Communications Workshops (INFOCOM WKSHPS), 2014
IEEE Conference on. IEEE, 2014, pp. 352–357.

[17] L. Lei, Z. Zhong, K. Zheng, J. Chen, and H. Meng, “Challenges on
wireless heterogeneous networks for mobile cloud computing,” IEEE
Wireless Communications, vol. 20, no. 3, pp. 34–44, 2013.

[18] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya,
“Mobile code offloading: from concept to practice and beyond,” IEEE
Communications Magazine, vol. 53, no. 3, pp. 80–88, 2015.

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589247, IEEE
Transactions on Services Computing

13

[19] M. Chen, Y. Hao, Y. Li, C.-F. Lai, and D. Wu, “On the computation
offloading at ad hoc cloudlet: architecture and service modes,” IEEE
Communications Magazine, vol. 53, no. 6, pp. 18–24, 2015.

[20] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[21] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proceedings of the 2nd USENIX conference on
Hot topics in cloud computing. USENIX Association, 2010, pp. 4–4.

[22] C. Wang, Y. Li, and D. Jin, “Mobility-assisted opportunistic computation
offloading,” IEEE Communications Letters, vol. 18, no. 10, pp. 1779–
1782, 2014.

[23] T. Truong-Huu, C.-K. Tham, and D. Niyato, “A stochastic workload
distribution approach for an ad hoc mobile cloud,” in Cloud Computing
Technology and Science (CloudCom), 2014 IEEE 6th International
Conference on. IEEE, 2014, pp. 174–181.

[24] L. Zhou, “Specific-versus diverse-computing in media cloud,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 25,
no. 12, pp. 1888–1899, 2015.

[25] L. Zhou, Z. Yang, H. Wang, and M. Guizani, “Impact of execution time
on adaptive wireless video scheduling,” IEEE Journal on Selected Areas
in Communications, vol. 32, no. 4, pp. 760–772, 2014.

[26] Q. Li, P. Yang, Y. Yan, and Y. Tao, “Your friends are more powerful
than you: Efficient task offloading through social contacts,” in Commu-
nications (ICC), 2014 IEEE International Conference on. IEEE, 2014,
pp. 88–93.

[27] Y. Li, Y. Jiang, D. Jin, L. Su, L. Zeng, and D. Wu, “Energy-efficient
optimal opportunistic forwarding for delay-tolerant networks,” IEEE
Transactions on Vehicular Technology, vol. 59, no. 9, pp. 4500–4512,
2010.

[28] W. Gao and G. Cao, “User-centric data dissemination in disruption
tolerant networks,” in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011,
pp. 3119–3127.

[29] X. Wang, M. Chen, Z. Han, T. T. Kwon, and Y. Choi, “Content
dissemination by pushing and sharing in mobile cellular networks: An
analytical study,” in Mobile Adhoc and Sensor Systems (MASS), 2012
IEEE 9th International Conference on. IEEE, 2012, pp. 353–361.

[30] B. Gao, L. He, L. Liu, K. Li, and S. A. Jarvis, “From mobiles to
clouds: Developing energy-aware offloading strategies for workflows,”
in Proceedings of the 2012 ACM/IEEE 13th International Conference
on Grid Computing. IEEE Computer Society, 2012, pp. 139–146.

[31] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos, “Music:
Mobility-aware optimal service allocation in mobile cloud computing,”
in Cloud Computing (CLOUD), 2013 IEEE Sixth International Confer-
ence on. IEEE, 2013, pp. 75–82.

[32] M.-A. Vasile, F. Pop, R.-I. Tutueanu, V. Cristea, and J. Kołodziej,
“Resource-aware hybrid scheduling algorithm in heterogeneous dis-
tributed computing,” Future Generation Computer Systems, vol. 51, pp.
61–77, 2015.

[33] X. Ge, H. Cheng, M. Guizani, and T. Han, “5G wireless backhaul
networks: challenges and research advances,” IEEE Network, vol. 28,
no. 6, pp. 6–11, 2014.

[34] X. Ge, B. Yang, J. Ye, G. Mao, C.-X. Wang, and T. Han, “Spatial
spectrum and energy efficiency of random cellular networks,” IEEE
Transactions on Communications, vol. 63, no. 3, pp. 1019–1030, 2015.

Min Chen is a professor in School of Computer
Science and Technology at Huazhong University of
Science and Technology (HUST). He is the director
of Embedded and Pervasive Computing (EPIC) lab.
He was an assistant professor in School of Com-
puter Science and Engineering at Seoul National
University (SNU) from Sep. 2009 to Feb. 2012. He
worked as a Post-Doctoral Fellow in Department of
Electrical and Computer Engineering at University
of British Columbia (UBC) for three years. Before
joining UBC, he was a Post-Doctoral Fellow at SNU

for one and half years. He has more than 180 paper publications. He received
Best Paper Award from IEEE ICC 2012, and Best Paper Runner-up Award
from QShine 2008.

Yixue Hao received the B.S. degree in Henan Uni-
versity , Kaifeng, China, in 2013 . He is currently a
Ph.D. candidate in Embedded and Pervasive Com-
puting (EPIC) lab led by Prof. Min Chen in School
of Computer Science and Technology at Huazhong
University of Science and Technology (HUST). His
research includes Internet of Things, Body Sensor
Networks, Mobile Cloud Computing.

Chin-Feng Lai is an associate professor at Depart-
ment of Engineering Science, National Cheng Kung
University since 2016. He received the Ph.D. degree
in department of engineering science from the Na-
tional Cheng Kung University, Taiwan, in 2008. He
received Best Paper Award from IEEE 17th CCSE,
2014 International Conference on Cloud Computing,
IEEE 10th EUC, IEEE 12th CIT . He has more
than 100 paper publications. He is an associate
editor-in-chief for Journal of Internet Technology.
His research focuses on Internet of Things, Body

Sensor Networks, E-healthcare, Mobile Cloud Computing, Cloud-Assisted
Multimedia Network, Embedded Systems, etc. He is an IEEE Senior Member
since 2014.

Di Wu is an Associate Professor and Associate
Department Head in the Department of Computer
Science, Sun Yat-sen University, Guangzhou, China.
He received the B.S. degree from the University of
Science and Technology of China in 2000, the M.S.
degree from the Institute of Computing Technology,
Chinese Academy of Sciences, in 2003, and the
Ph.D. degree in Computer Science and Engineering
from the Chinese University of Hong Kong in 2007.
During 2007-2009, he worked as a postdoctoral
researcher in the Department of Computer Science

and Engineering, Polytechnic Institute of NYU, advised by Prof. Keith W.
Ross. He is the co-recipient of IEEE INFOCOM 2009 Best Paper Award.

Yong Li received the B.S. degree in electronics and
information engineering from Huazhong University
of Science and Technology, Wuhan, China, in 2007
and the Ph.D. degree in electronic engineering from
Tsinghua University, Beijing, China, in 2012.During
July to August 2012 and 2013, he was a Visiting Re-
search Associate with Telekom Innovation Laborato-
ries and The Hong Kong University of Science and
Technology, respectively. During December 2013
to March 2014, he was a Visiting Scientist with
the University of Miami. He is currently a Faculty

Member of the Department of Electronic Engineering, Tsinghua University.
His research interests are in the areas of networking and communications.

Kai Hwang is a Professor of Electrical Engineer-
ing and Computer Science, University of Southern
California (USC). He received the Ph.D. from the
University of California, Berkeley in 1972. Prior
to joining USC in 1986, he has taught at Pur-
due University for 11 years. He has served as the
founding Editor-in-Chief of the Journal of Parallel
and Distributed Computing from 1983 to 2011. Dr.
Hwang has published 8 books and 250 scientific
papers. According to Google Scholars, his work was
cited over 15,000 times with an h-index of 52. His

most cited book on Computer Architecture and Parallel Processing was
cited more than 2,300 times and his PowerTrust (IEEE-TPDS, April 2007)
paper was cited over 540 times. An IEEE Life Fellow, Hwang received
Lifetime Achievement Award from IEEE Cloudcom-2012 for his pioneering
contributions in the field of computer architecture, parallel, distributed and
cloud computing, and cyber security .

