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Abstract—In recent years, empowered by rich media gen-
eration devices and convenient Internet access, Crowdsourced
Live Game Video Streaming (CLGVS) has become one of the
most popular Internet services. Twitch.tv, the most well-known
CLGVS platform in the world, allows gamers to broadcast
their gaming videos over the Internet. With the prevalence of
mobile devices, viewers can watch gamers playing video games
anywhere, anytime, on any devices (e.g., smartphones, tablets, or
personal computers). However, the heterogeneity of user devices
makes conventional solutions hard to ensure user-perceived quali-
ty. In this paper, we address the problem of cost-effective adaptive
live game video streaming from the perspective of CLGVS service
providers. Our purpose is to minimize the operational cost for
CLGVS service providers by making live transcoding decisions,
bit-rate adaptation decisions and datacenter assignment decisions
dynamically. Meanwhile, our algorithm also ensures good-enough
service quality for viewers. Due to the diversity of game genres,
we also take game genres into account when designing our
algorithm. To achieve the above purpose, we formulate the
problem into a constrained stochastic optimization problem. By
leveraging the Lyapunov optimization framework, we derive the
online strategy with provable performance bound. To evaluate
the effectiveness of our proposed algorithm, we further conduct
a series of trace-driven simulations. The experimental results
demonstrate the effectiveness of our algorithm in terms of
operational cost and service quality. Our proposed algorithm
can reduce operational cost by up to 50% while achieving good-
enough viewer QoE compared with other alternatives.

Index Terms—video transcoding, cloud computing, video dis-
tribution, crowdsourced streaming, video games

I. INTRODUCTION

The past decade has witnessed the explosive growth in
live game video streaming. Twitch.tv [1] is one of the most
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successful live game video streaming service providers in the
world. The amazing popularity has made Twitch.tv become
the fourth largest source of the peak Internet traffic in the
U.S. in February 2014 [2]. Twitch.tv currently attracts more
than 1 million monthly active broadcasters and over 45 million
monthly viewers [3]. The success of Twitch.tv proves the huge
potential of the live game video streaming service, and has also
attracted great attentions from both industry and academia.

The revolution of the mobile Internet driven by smart and
powerful mobile devices has greatly enriched the sources of
video platforms. Such change has created a new kind of
video platform, called crowdsourced live streaming platform
[4]. Crowdsourced live streaming platforms not only serve
massive audience worldwide, but receive contents from many
sources in the crowd. By combining crowdsourced technology
and live game video streaming, Twitch.tv provides a new
form of video service, namely crowdsourced live game video
streaming (CLGVS) service.

Different from the traditional video-on-demand services,
such as YouTube [5], Hulu [6] and so on, CLGVS platforms
allow individual gamers to broadcast live game videos over the
Internet. By leveraging the CLGVS service, gamers can stream
game videos and communicate with viewers in real time.
Meanwhile, viewers can make comments or even directly dis-
cuss with gamers via real-time chatting. The CLGVS service
has already become a new type of video entertainment, and
brought remarkable commercial interest. CLGVS platforms
also support game video streams generated by various devices,
such as personal computer, PS4, Xbox, and so on.

The existing CLGVS service providers (e.g. Twitch.tv [1],
Douyu.tv [7], etc.) usually build their own private datacenters
(with dedicated hardware) and private networks to ensure the
service quality. To provide adaptive video streaming services,
CLGVS service providers leverage their own private datacen-
ters to transcode the live video streams into multiple versions
and rely on CDNs (Content Distribution Networks) to deliver
live video streams to geo-distributed viewers [4] [8]. However,
such traditional architecture has the following shortcomings:
First, it is costly for CLGVS service providers to build the
private datacenters and private networks. According to the
previous study [8], the number of online users may change
dramatically over time. The traditional private datacenters can
not provide elastic computation resources, and may incur
a huge waste of money. Second, with conventional tech-
niques, CLGVS service providers have to provide live video
transcoding service themselves. But live video transcoding
is computation-intensive and it is hard to provide elastic
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transcoding resources. Third, in the existing architectures,
CLGVS service providers rely on CDNs to deliver live video
streams. Although, it is convenient for service providers to
build CLGVS service over CDNs, but it is hard for CLGVS
service providers to customize the delivery strategy for every
viewers to ensure the service quality.

The emerging technology of cloud computing releases video
streaming service providers from building large, expensive
private datacenters. By elastic resource provisioning, the cloud
platform can offer a perfect solution for cost-effective video
streaming service. Moreover, the cloud-based live transcod-
ing services (e.g. Zencoder [9], Encoding.com [10], etc.),
relieve the streaming platform from computation-intensive live
transcoding via offering elastic transcoding resources. When
receiving game video streams from gamers, the CLGVS plat-
form exploits cloud transcoding services to transcode original
streams to multiple versions and delivers them to viewers via
geo-distributed datacenters. The CLGVS platform can also
help to select a proper version of video streams according
to the viewer’s network conditions.

However, it is very difficult to design a cost-effective live
game video streaming platform that can satisfy viewers with
high service quality. The challenges are multifaceted: First,
the heterogeneity of user devices (e.g. PCs, smartphones,
tablets, etc.) demands multiple versions of original video
streams. There exists significant diversity among user devices
on their computational capacity, screen resolution, network
bandwidth and so on. Therefore, CLGVS platforms should be
able to provide the most appropriate video version. Second,
compared with the conventional video-on-demand services,
the video sources of a CLGVS platform are often generated
by individual gamers. These video sources are much more
dynamic than dedicated content providers, as gamers can start
or terminate video streaming at their own will. In addition,
the unpredictable wireless network conditions make it hard
to ensure service quality. Third, the geo-distributed nature of
viewers makes it hard to deliver high-quality video streams
to each viewer. To guarantee the global accessibility of high
quality streaming service, the CLGVS service provider should
deploy its platform on multiple datacenters. Fourth, different
game genres require various levels of video quality to achieve
basic experience, which should therefore be taken into account
for resource provisioning and bit-rate selection. Fifth, both
live transcoding and video delivery incur huge monetary cost,
including live transcoding cost, bandwidth cost and so on. To
be successful in the market competition, CLGVS providers
should minimize the operational cost as much as possible,
while providing good-enough service quality to viewers.

In this paper, we try to address the above-mentioned
challenges from the perspective of CLGVS providers. Our
proposed algorithm aims at assisting the CLGVS service
providers to offer a cost-effective adaptive CLGVS service, in
which the operational cost can be minimized as much as possi-
ble, while still ensuring good-enough viewing experience. The
algorithm design includes three major components: dynamic
live transcoding decisions, adaptive bit-rate assignment and
intelligent datacenter selection. Mathematically, we formulate
the problem into a constrained stochastic optimization prob-

lem, and exploit the Lyapunov optimization framework [11]
to derive the online algorithm. Our algorithm can optimize
transcoding decisions, bit-rate assignment and datacenter se-
lection jointly. Theoretically, we prove our proposed algorithm
can approach the optimality with a tunable bound. In summary,
we mainly make three contributions:

• We consider the optimization problem of providing cost-
effective CLGVS service from the perspective of CLGVS
service providers. Our proposed algorithm aims at reduc-
ing the operational cost while still ensuring good-enough
service quality by jointly optimizing the live transcoding
decisions, bit-rate assignment and datacenter selection.
In addition, in order to extend the applicability of our
algorithm , we take game genres into consideration when
designing online algorithms.

• We formulate the problem into a constrained stochastic
optimization problem. By exploiting the Lyapunov op-
timization theory, we design an online algorithm called
OCTAD, which can make dynamic transcoding decisions
for each gamer, and perform adaptive bit-rate assignment
and datacenter selection for each viewer. Through making
decisions dynamically, our algorithm can significantly
reduce operational cost and ensure viewer QoE.

• To evaluate the effectiveness of our proposed algorithm
OCTAD, we conduct extensive trace-driven simulations.
We utilize the real trace to make our simulations more
realistic. Our experimental results show that, OCTAD
can cut down operational cost by up to 50% while
achieving good-enough viewer QoE compared with other
algorithms.

The rest of this paper is organized as follows. Section
II reviews previous related work. The system model and
formulation are described in Section III. In Section IV, we
describe the design of our proposed online algorithm OCTAD.
The simulation and performance evaluation of OCTAD are
presented in Section V. Finally, Section VI concludes the paper
and discusses the future work.

II. RELATED WORK

Due to the development of video streaming technology and
the flourish of gaming industry, live game video streaming has
gained a lot of attention from both industry and academia.

Although CLGVS services are emerging in recent years,
many measurement works have been conducted to under-
stand the architecture, system performance and user behaviors
of CLGVS platforms. Shea et al. [3] presented an initial
experiment-based performance study, in which they studied
the architecture of real-world gaming and streaming platforms.
Pires et al. [12] investigated Twitch.tv. and pointed out the
difference of traffic characteristics between YouTube Live and
Twitch.tv. Smith et al. [13] studied the gaming community
phenomenon in live game video streaming platforms and
compared with some typical cloud gaming platforms (e.g.
OnLive[14]). In their measurement work, they divided viewers
into several communities and investigated the characteristics
of each community. Besides, there are some other works to
study virtual communities in Twitch.tv. Hamilton et al. [15]
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found that many stream communities formed around shared
identities, and also described the processes through which
stream communities were formed.

Live video transcoding is important for CLGVS services.
Wang et al. [16] proposed to leverage idle CDN computation
resources to jointly transcode and deliver videos. Wu et al. [17]
proposed a collaborative strategy that leverages peer-to-peer
technologies to distribute video transcoding tasks among peers.
Cheng et al. [18] presented a framework for cloud-based video
transcoding in the context of mobile video conference. Based
on the above transcoding framework, they further introduced
a prediction-based scheduling algorithm to optimize both the
latency requirement and cloud utility cost. Jin et al. [19] ex-
ploited a three-way tradeoff between the caching, transcoding
and bandwidth costs to minimize the total operational cost
for on-demand video services providers. According to the
observation that most of viewers terminate viewing sessions
within 20% of their durations, Gao et al. [20] proposed a
partial transcoding scheme for content management in the
media cloud, in which some segments are pre-processed and
stored in the cache, and the other segments are transcoded on
the fly.

To satisfy the global distribution requirements of video
streaming, current systems mostly rely on content distribution
networks (CDNs) [21], peer-to-peer (P2P) [22], or hybrid solu-
tions [23]. The cloud platform with elastic resource allocation
capability has become an effective solution for large-scale
global video delivery. He et al. [24] investigated the optimal
deployment problem of cloud-assisted video distribution ser-
vices and explore the best tradeoff between the operational
cost and the user experience. Wu et al. [25] exploits a geo-
distributed cloud to support large-scale social media streaming
applications. Xu et al. [26] investigated the application ar-
chitecture, video generation, adaptation schemes and delivery
strategies of three popular video telephony systems, namely,
Google+, iChat and Skype.

Our work differs from previous works in three aspects: First,
although there exist some studies on adaptive bit-rate selection
and transcoding decisions, it is infeasible to simply combine
them to make joint decisions. Unlike previous works, we
consider gamers, viewers and service providers as a whole and
make decisions for three roles jointly. Second, our algorithm is
specifically customized for the CLGVS systems. Since differ-
ent game genres have various characteristics, we also take the
diversity of game genres into account when we develop our
system model and conduct algorithm design. It ensures our
proposed algorithm can be applied to more general scenarios.
Third, by exploiting the Lyapunov optimization theory, our
proposed algorithm can reduce operational cost significantly
and still ensure good-enough viewer QoE. Another benefit
of our algorithm is that OCTAD does not require any future
knowledge about user behaviors and network conditions. By
tuning the Lyapunov parameters, our algorithm can approach
the optimality with infinitely small distance.

III. SYSTEM MODEL AND ARCHITECTURE

A. System Model

In this section we consider a typical CLGVS platform as
illustrated in Figure 1. The mathematical notations used in
problem formulation are summarized in Table I.

S1 S2 SN

...

...

User Region 1 User Region 2 User Region N

Gamer 1 Gamer 2 Gamer J

...

Video Cloud

Fig. 1. A typical architecture of a crowdsourced live game video streaming
(CLGVS) platform

CLGVS platforms (e.g., Twitch.tv [1], Douyu.tv [7]) allow
gamers to broadcast their game videos over the Internet. The
heterogeneity of user devices and the global distribution of
viewer population make conventional solutions hard to ensure
service quality. The emerging technology of cloud computing
makes it much easier to solve these issues. In Figure 1,
gamers stream their game videos to the CLGVS platform,
which then delivers videos to viewers. In order to satisfy the
requirements of viewers using different devices, the platform
should transcode the original video streams to multiple ver-
sions and deliver the transcoded streams to viewers. In such
an architecture, the service provider leverages cloud-based
transcoding services, such as Zencoder [9], Encoding.com
[10], Panda [27], to transcode the original video stream to
various bit-rates. Moreover, geo-distributed datacenters of the
cloud platform are used to deliver video streams to viewers in
various regions.

Assume that a CLGVS service provider deploys streaming
servers on N datacenters, denoted by {S1, S2, · · ·, SN}.
Whenever a user request arrives, the platform redirects it to
a proper datacenter. We define P (j, t) as the bit-rate of the
video stream uploaded by gamer j at time slot t. In this
model, we further assume the cloud transcoding service can
transcode the original video stream to M different target bit-
rates. Define Bs(m) as a function to return the m-th target
bit-rate, m ∈ {1, 2, · · ·M}. In our model, we consider a time-
slotted system in which time is divided into a series of time
slots and each time slot lasts for a period of τ . We further
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suppose that the CLGVS service provider makes decisions at
the beginning of each time slot. To facilitate our presentation,
we define Bv(i, t) as a function to obtain the bit-rate assigned
to viewer i. We define Z(i, t) as a function to obtain the index
of the datacenter which viewer i connects to.

TABLE I
KEY MATHEMATICAL NOTATIONS IN SYSTEM MODEL

Notation Description
N The number of datacenters.
M The number of target versions provided by cloud

transcoding service.
τ Length of time slot.

P (j, t) The bit-rate of video stream uploaded by gamer j
at time slot t.

Bs(m) The m-th target bit-rate.
Bv(i, t) The bit-rate assigned to viewer i at time slot t.
Z(i, t) The index of the datacenter which viewer i connects to

at time slot t.
R(j, t) The set of indexes of bit-rates transcoded from gamer j’s

video stream at time slot t.
G(i) The category that viewer i belongs to.
E(k) The basic bit-rate required by viewers in the k-th category.
U(n, t) The unit bandwidth price in datacenter n.
W (n, t) The amount of bandwidth usage in datacenter n.
It(i, n) Indicator that represents whether viewer i connects to

datacenter n at time slot t.
Cb(t) The bandwidth cost at time slot t.
Cs(t) The transcoding cost at time slot t.
Co(t) The operational cost at time slot t.
Ds(i, t) The transcoding delay experienced by viewer i

at time slot t.
Dn(i, t) The network delay experienced by viewer i

at time slot t.
D(i, t) The service delay experienced by viewer i

at time slot t.
Q(i, t) The QoE of viewer i at time slot t.

Define R(j, t) as the set of indexes of bit-rates transcoded
from gamer j’s video stream in time slot t. To avoid useless
transcoding operations (e.g., transcoding from a lower-bit-rate
version to a higher-bit-rate version), we must ensure that:

P (j, t) ≥ max{Bs(m),m ∈ R(j, t)}, ∀j,

where R(j, t) ⊆ {1, 2, · · ·,M}.
The CLGVS platform allows gamers to broadcast game

videos in various categories. Each game genre has different
requirements on video quality. According to the genre of
game videos watched by viewers, we divide viewers into K
categories, denoted as G = {G1, G2, · · ·, GK}. Viewers in the
same category have similar QoE requirements. We define a
function G(i) to obtain the category that viewer i belongs to.
Let E(k) be the basic bit-rate required by viewers in the k-th
category. To ensure the basic QoE of each viewer, all viewers
should receive a video stream with a bit-rate no less than
E(G(i)). That means, in each time slot t, we must guarantee
that:

Bv(i, t) ≥ E(G(i)), ∀i,

where G(i) returns the category that viewer i belongs to and
E(G(i)) is the basic bit-rate that viewer i requires to get
a just-good-enough experience, and the left-hand-side of the
inequality is the bit-rate received by viewer i in time slot t.

B. Operational Cost Model

For geo-distributed datacenters, the bandwidth price varies
across different regions. In time slot t, let U(n, t) and W (n, t)
be the unit bandwidth price and the amount of bandwidth
usage in datacenter n respectively. Assume the bandwidth
price keeps constant within a time slot. Then the bandwidth
cost of all datacenters can be given by:

Cb(t) =

N∑
n=1

U(n, t) ·W (n, t),

where W (n, t) =
∑

i∈V t

Bv(i, t) · It(i, n) and V t be the set of

viewers at the beginning of time slot t. It(i, n) is an indicator
that represents whether viewer i connects to datacenter n at
time slot t. That is:

It(i, n) = 1 {viewer i connects to datacenter n} .

We also define Cb(i, t) as the bandwidth cost incurred by
viewer i at time slot t. Then the bandwidth cost can be written
as:

Cb(t) =
∑
i∈V t

Cb(i, t),

where Cb(i, t) = Bv(i, t) · U(Z(i, t), t).
In addition to the bandwidth cost, the CLGVS service

provider also needs to pay for the transcoding cost. According
to the current pricing model (e.g., Zencoder), the transcoding
cost is closely related to the input bit-rate, target bit-rate and
the video length. We define the transcoding cost incurred by
gamer j at time slot t as below:

Cs(j, t) =
∑

m∈R(j,t)

C̃s(P (j, t), Bs(m), t, τ),

where C̃s(P (j, t), Bs(m), t, τ) is the service cost incurred by
transcoding a video stream from a bit-rate P (j, t) to a bit-rate
Bs(m) and τ is the length of a video. Let Ht be the online
gamer set at the beginning of time slot t. Then the overall
transcoding cost for all gamers can be represented as:

Cs(t) =
∑
j∈Ht

Cs(j, t).

Transcoding cost and bandwidth cost make up most of the
operational cost of CLGVS service providers for live game
broadcasting. Compared with the above two kinds of cost,
the fraction of other cloud service cost (e.g. storage cost,
computation cost, etc.) is negligible. To simplify the prob-
lem formulation, we mainly consider transcoding cost and
bandwidth cost in this paper. Therefore, in our model, the
operational cost is defined as the sum of bandwidth cost and
transcoding cost. Then the operational cost Co(t) in time slot
t can be expressed as:

Co(t) = Cb(t) + Cs(t).
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C. Delay Model

According to [28], the delay constraint is one of the main
challenges that a CLGVS service provider should face with.
Similar to [29], we divide the delay experienced by a viewer
into three components: network delay (at the network side),
transcoding delay (at the server side) and playout delay (at the
client side). Network delay is usually referred to as the Round-
Trip Time (RTT), which can be measured by tools such as Ping
and King [30]. Under the CLGVS scenario, network delay
consists of three parts: gamer-side network delay, viewer-
side network delay and transcoder-side network delay. Since
gamer-side network delay and transcoder-side network delay
won’t be influenced by our decisions, we just take viewer-side
network delay into consideration. Viewer-side network delay
may be affected by multiple factors (e.g. network congestion,
flash crowd, etc.). In case that these issues happen, the viewer-
side network delay will increase significantly which will result
in negative effects on the viewers’ QoE. Transcoding delay is
the difference between the time when the transcoding cloud
receives the original stream and the time when the target
versions are created. As for the playout delay, it is the time
required for the user device to decode and display the video
on the screen. Since the playout delay is usually constant and
not affected by the server side, we do not take it into account
for brevity. Thus, we re-define the total delay experienced by
viewer i as the sum of transcoding delay Ds(i, t) and network
delay Dn(i, t), namely,

D(i, t) = Ds(i, t) +Dn(i, t).

Transcoding delay is determined by both the input bit-rate
and the target bit-rate [8], while network delay is mainly
determined by the network condition between a viewer and
a datacenter.

Then we can derive the transcoding delay and the network
delay for viewer i at time slot t as follow:

Ds(i, t) = D̃s(P (F t(i), t), Bv(i, t), t),

Dn(i, t) = D̃n(i, Z(i, t), t).

In the above equations, F t(i) returns the index of a gamer who
hosts the channel watched by viewer i at time slot t. And
D̃s(P (F t(i), t), Bv(i, t), t) is the average video transcoding
delay for an input version with a bit-rate P (F t(i), t) and a
target version with bit-rate Bv(i, t). D̃n(i, Z(i, t), t) is the
network delay between a viewer i and a datacenter Z(i, t)
at time slot t.

D. QoE Model

If delay constraints can be satisfied, viewer QoE is mainly
determined by the received bit-rate and game genre. Similar to
[31] [32], we define the QoE function of viewer i who receives
a video stream with a bit-rate Bv(i, t) as Ψ(G(i), Bv(i, t)),
which is a non-decreasing concave function of received bit-rate
Bv(i, t). Such definition can ensure that the marginal benefit
brought by increasing the video bit-rate will be diminished

when the video bit-rate is high. Thus, in each time slot t, the
QoE of viewer i can be defined as below:

Q(i, t) = Ψ(G(i), Bv(i, t)).

Then, the overall utility of all viewers in the system at time
slot t can be represented as:

Q(t) =
∑
i∈V t

Q(i, t),

where V t stands for the viewer set at time slot t.

E. Problem Formulation

As a CLGVS service provider, it is critical to minimize
the operational cost and increase the viewer QoE in the
meanwhile. Therefore, our objective in this paper is to design
a cost-effective live video transcoding and delivery algorithm.
To this purpose, we formulate the problem into the following
stochastic optimization problem:

P1.min lim
T→+∞

1

T

T∑
t=1

(Co(t)− α ·Q(t))

s.t.
N∑

n=1

It(i, n) = 1, ∀i (a)

R(j, t) ⊆ {1, 2, · · ·,M},∀j (b)
Bv(i, t) ∈ {Bs(m),m ∈ R(F t(i), t)}, ∀i (c)
Z(i, t) ∈ {1, 2, · · ·, N}, ∀i (d)
P (j, t) ≥ max{Bs(m),m ∈ R(j, t)},∀j (e)
Bv(i, t) ≥ E(G(i)), ∀i (f)

lim
T→+∞

1

T

T∑
t=1

1

N t

∑
i∈V t

D(i, t) ≤ ϵ. (g)

In the above problem formulation, the objective function
contains two parts. One is the long-term time-average service
cost incurred by bandwidth consumption and transcoding
service, which should be minimized as much as possible.
The other is the total QoE of all viewers, which should be
maximized. Obviously, these two components conflict with
each other. To optimize two conflicting objective components,
we combine them into one weighted-sum objective function.
The parameter α is used to tune the trade-off between two
components. The values of three decision variables R(j, t),
Bv(i, t), Z(i, t) are limited by their corresponding constraints.

Constraint (a) ensures that each viewer receives one stream
from only one datacenter. Constraint (b) guarantees that the
original stream of gamer j can only be transcoded to M
different bit-rates provided by the transcoding cloud. Con-
straint (c) ensures viewer i can only choose the bit-rate
that the video stream has been transcoded to. Constraint (d)
makes sure that viewer i can only choose one datacenter from
{S1, S2, · · ·, SN}. Constraint (e) avoids useless transcoding
tasks (e.g. transcoding from a lower-bit-rate version to a
higher-bit-rate version). And constraint (f) guarantees that
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each viewer receives a bit-rate higher than the basic bit-rate
required by the game that the viewer is watching. The last
constraint (g) ensures that the average service delay is no
greater than a pre-defined threshold. V t stands for the viewer
set at the beginning of time slot t, and N t is the size of set V t,
which is also the number of online viewers at time slot t. ϵ
is the max-tolerable delay experienced by a viewer. When the
delay constraint is satisfied, a further reduction on delay brings
marginal benefits. In this case, the service provider should
improve video quality to increase viewer QoE and reduce
operational cost at the same time.

IV. DESIGN OF COST-EFFECTIVE ONLINE ALGORITHM

To solve the constrained optimization problem in P1, we
leverage the Lyapunov optimization framework [11] to design
online strategies for transcoding decisions, bit-rate assignment
and datacenter selection. A major benefit of the Lyapunov
optimization is that it doesn’t require any priori knowledge
about gamer behaviors, viewer behaviors and network con-
ditions. By taking actions to greedily minimize the drift-
plus-penalty in each time slot, it can provide performance
with explicit bounds. Other approaches (e.g. Markov decision
process [33], non-linear programming [34]) can also be used
to solve this problem, but these approaches require some
priori knowledge about gamer behaviors, viewer behaviors and
network conditions.

In the Lyapunov optimization framework, the original s-
tochastic optimization problem can be transformed into an
optimization problem of minimizing the Lyapunov drift-plus-
penalty. By using the Lyapunov optimization, the time average
delay constraint in Problem P1 can be transformed into a
queue stability constraint [11].

A virtual queue Θ is introduced to transform the time
average delay constraint into a queue stability constraint. Θ
represents the virtual delay queue of online viewers and Θ(t)
denotes the virtual queue backlogs at time slot t. The update
of virtual queue Θ(t) is given by:

Θ(t+ 1) = max{Θ(t) +
1

N t

∑
i∈V t

D(i, t)− ϵ, 0}.

In Lemma IV.1, we prove that the delay constraint (g) of
P1 can be ensured when the virtual queue Θ is stable.

Lemma IV.1 If the virtual queue Θ is stable, then the time
average delay constraint (g) of Problem P1 can be satisfied.
That is:

lim
T→+∞

Θ(T + 1)

T
= 0⇒ lim

T→+∞

1

T

T∑
t=1

1

N t

∑
i∈V t

D(i, t) ≤ ϵ.

Proof: Please see Appendix A in our technical report [40]
for the proof details.

We define the Lyapunov function as L(t) = 1
2Θ

2(t). And
we use the Lyapunov drift ∆(Θ(t)) = L(t + 1) − L(t) to
represent the expected change in the Lyapunov function over
time. According to the Lyapunov optimization framework, we

can then obtain the drift-plus-penalty by adding the objective
function in P1 to the drift, namely,

∆(Θ(t)) + V E{Co(t)− α ·Q(t)|Θ(t)},

where V is a tunable parameter that affects the performance
of the online algorithm. Thus, the solution of the original s-
tochastic optimization problem can be approximately obtained
by solving the problem of minimizing the drift-plus-penalty
∆(Θ(t))+V E{Co(t)−α ·Q(t)|Θ(t)} in each time slot. That
means, P1 can be transformed into the following optimization
problem:

P2.min ∆(Θ(t)) + V E{Co(t)− α ·Q(t)|Θ(t)}
s.t. (a)(b)(c)(d)(e)(f).

In order to solve Problem P2, we first derive the upper
bound of the drift-plus-penalty, denoted by Γ. We give the
upper bound Γ in Lemma IV.2.

Lemma IV.2 For any feasible solution set R(j, t), Bv(i, t),
Z(i, t), It(i, n), the drift-plus-penalty is upper bounded by Γ,
namely

∆(Θ(t)) + V E{Co(t)− α ·Q(t)|Θ(t)} ≤ Γ,

where the upper bound Γ = 1
2 (D

2
max + ϵ2) +

E{ 1
NtΘ(t)

∑
i∈V t

D(i, t)|Θ(t)}+ V E{Co(t)− α ·Q(t)|Θ(t)}.

Here we suppose that D(i, t) is a non-decreasing convex
function, and upper-bounded by Dmax.

Proof: Please see Appendix B in our technical report [40]
for the proof details.

Instead of minimizing the drift-plus-penalty directly, our
strategy actually seeks to minimize the upper bound Γ. By
eliminating the constant part and using the rest as the objective
function, we transform Problem P2 into Problem P3:

P3.min
∑
i∈V t

(
Θ(t)

N t
D(i, t) + V · Cb(i, t)− V α ·Q(i, t))

+
∑
j∈Ht

V · Cs(j, t)

s.t. (a)(b)(c)(d)(e)(f).

Through a series of conversions, we transform the original
optimization problem P1 into a simple optimization problem
P3. In order to solve the problem P3, we design a one-slot
algorithm (as described in Algorithm 1), which can obtain the
optimal solutions for P3 and reduce computation complexity
significantly.

In Algorithm 1, we need to make decisions for each online
gamer and viewer at the beginning of each time slot. By
leveraging the Lyapunov optimization framework, transcoding
decisions, bit-rate assignment and datacenter selection can be
derived by solving the one-slot Problem P3 at each time
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Algorithm 1 One-Slot Algorithm
Input:

The value of K,M,N, V, α, τ
Number of online viewers N t

Upload bit-rate of gamer j, P (j, t)
Bit-rate mapping function Bs(m)
Viewer-category mapping function G(i)
Gamer-viewer mapping function F t(i)
Basic bit-rate requirement E(k)
Transcoding delay D̃s(·) and network delay D̃n(·)
Transcoding cost C̃s(·)
QoE function Ψ(·)
Delay tolerance ϵ
Unit bandwidth price of datacenter n U(n, t)
Queue backlog status Θ(t)

Output:
Transcoding decisions R(j, t), ∀j ∈ Ht

Bit-rate assignment Bv(i, t), ∀i ∈ V t

Datacenter selection Z(i, t), ∀i ∈ V t

Viewer-datacenter indicator It(i, n), ∀i ∈ V t

1: Initialization step: initialize R(j, t), Bv(i, t), Z(i, t),
It(i, n);

2: for all online gamers j ∈ Ht do
3: for all online viewers i watching j’s channel do
4: find optimal solution

(R(j, t), Bv(i, t), Z(i, t), It(i, n)) for P3;
5: end for
6: end for

slot. We can leverage other techniques, such as dynamic
programming, to help derive the optimal solutions of Problem
P3. The details of our online algorithm, called OCTAD (Online
Cloud Transcoding And Distribution), are given in Algorithm
2.

In Theorem IV.3 we prove that our online algorithm can
approach the optimal solution of the original optimization
problem within infinitely small distance. And the gap between
our online algorithm and the optimal solution is tunable
through the parameter V .

Theorem IV.3 The time-average weighted sum of operational
cost and viewer QoE incurred by online algorithm derived via
solving Problem P2 is bounded by Ô + Λ

V , that is,

lim
T→+∞

1

T

T∑
t=1

(Co(t)− α ·Q(t)) ≤ Ô +
Λ

V

where Ô denotes the optimal value of the objective function
in Problem P1, and Λ = 1

2 (D
2
max + ϵ2).

Proof: Please see Appendix C in our technical report [40]
for the proof details.

The tunable parameter V determines the approximation
extent of our algorithm to the optimality. The parameter V
also determines the tradeoff between the objective function and
delay constraints in our problem. With a larger value of V , the
performance of our algorithm will be close to the optimality.

Algorithm 2 OCTAD Algorithm
Input:

The value of K,M,N, V, α, τ
Number of online viewers N t

Upload bit-rate of gamer j, P (j, t)
Bit-rate mapping function Bs(m)
Viewer-category mapping function G(i)
Gamer-viewer mapping function F t(i)
Basic bit-rate requirement E(k)
Transcoding delay D̃s(·) and network delay D̃n(·)
Transcoding cost C̃s(·)
QoE function Ψ(·)
Delay tolerance ϵ
Unit bandwidth price of datacenter n U(n, t)

Output:
Transcoding decisions, bit-rate assignment, datacenter se-
lection and viewer-datacenter indicators R(j, t), Bv(i, t),
Z(i, t) and It(i, n) for all online gamers and viewers at
each time slot.

1: Initialization step: Let t = 1, and set Θ(1) = 0
2: while CLGVS service is operating do
3: At the beginning of each time slot t, get the information

about queue backlog Θ(t) and the real-time bandwidth
price U(n, t) of each datacenter n;

4: Gather the information of all online gamers Ht and the
uploading bit-rates information of each gamer P (j, t);

5: Get the information of all online viewers V t and the
quantity of online viewers N t;

6: Update the network delay between each viewer and
datacenter D̃n(·);

7: Calculate transcoding decisions, bit-rate assignment,
datacenter selection and viewer-datacenter indicators:
( R(j, t), ∀j; Bv(i, t), ∀i; Z(i, t), ∀i; It(i, n), ∀i ) by
leveraging Algorithm 1;

8: Update virtual queues Θ(t) according to update opera-
tion Θ(t+ 1) = max{Θ(t) + 1

Nt

∑
i∈V t

D(i, t)− ϵ, 0};

9: Update t← t+ 1;
10: end while

However, it is at the cost of a larger virtual queue length,
which implies that viewers will experience a larger service
delay.

V. PERFORMANCE EVALUATION

In this section, we develop a trace-driven simulator to
evaluate the performance of our proposed algorithm. Firstly,
we will describe the simulation settings. Next, we compare
our proposed algorithm with four other strategies.

A. Simulation Setup

In our simulations, we consider the scenario where a
CLGVS service provider deploys its platform over the cloud.
We assume that the service provider deploys its stream-
ing servers on five geo-distributed datacenters and leverages
cloud transcoding services (e.g. Zencoder[9]) to support live
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transcoding. To make our simulations more realistic, we adopt
the real bandwidth pricing model obtained from the Amazon’s
website [35]. According to the Amazon’s pricing model,
bandwidth price is region-dependent and varies over time. In
our simulations, we assume that the bandwidth price of each
datacenter takes values in the range of [0.05, 0.07] (in units
of dollars per gigabyte) and varies over time. We also assume
that the bandwidth price of each datacenter is independent
and identically distributed (i.i.d.). To support live transcod-
ing service, a CLGVS service provider needs to purchase
the transcoding service from a third-party transcoding SaaS
provider (e.g. Zencoder [9]). We set the transcoding cost based
on the Zencoder’s pricing model [36], in which the transcoding
cost is determined by three factors: input bit-rate, target bit-rate
and video length. In our simulations, we set the transcoding
cost in the range of [0.15, 0.3] (in units of dollars per minute).

For simplicity, we assume that gamers broadcast game
videos in five different game genres. The service delay tol-
erance is a tunable parameter of a CLGVS platform. In our
experiments, we set the pre-defined threshold of service delay
to be 400 milliseconds. Considering that different types of
games have various requirements on the video bit-rates to
ensure a basic game experience, we assume that the basic bit-
rate of each game genre follows a uniform distribution in [3, 4],
[2, 3], [1.5, 2], [1, 1.5], [0.5, 1] Mbits/s. According to the upload
video bit-rate recommended by YouTube Live [37], we set the
upload bit-rate of each channel in the range of [2, 5] Mbits/s.
Based on the encoding schemes recommended by Zencoder
[38], we suppose a video stream can be transcoded to multiple
bit-rates in the range of [1, 3] Mbits/s.

We set the transcoding delay of each channel based on
the measurement work in [8]. In our paper, we consider
service delay as the sum of network delay and transcoding
delay, we set the transcoding delay in the range of [100, 600]
milliseconds. Considering that the playout delay is usually
constant and will not be affected by the strategy we made, we
set the playout delay to be 15 milliseconds according to [39].
We use the real dataset on network delay among Internet nodes
obtained from the MIT-King Dataset [41]. In the simulations,
the bandwidth of each viewer is configured to be higher than
the basic bit-rate of the game that the viewer watches, which
means the bandwidth conditions wouldn’t affect the basic
experience. And we also suppose that the upload bandwidth
of a gamer is always higher than the bit-rate of the uploaded
game video. In our experiments, we use the dataset in [42] to
simulate the behavior of existing gamers and viewers, and the
arrival process of new gamers and viewers.

A viewer’s QoE is mainly affected by the received video
bit-rate, when watching live game videos. Similar to the
QoE model in [43], we define the QoE function Ψ(·) as a
logarithmic function of the received video bit-rate and the
game genre, namely,

Ψ(G(i), Bv(i, t)) = ln(1 +
Bv(i, t)

E(G(i))
),

where E(G(i)) is the basic bit-rate required by a viewer i,
and Bv(i, t) is the actual bit-rate received by viewer i. In
the above definition, the QoE received by a viewer increases

concavely with the increase of the ratio between the actual
video bit-rate and the basic bit-rate. Such a definition is based
on the intuition that, when the received bit-rate is higher than
the basic required bit-rate, a further bit-rate increase brings
marginal benefits.

Our proposed online algorithm can help a CLGVS service
provider make transcoding decisions for each gamer, and can
also help on bit-rate adaptation and datacenter selection for
each online viewer. In our simulations, we suppose that each
time slot lasts for 10 minutes. Since our algorithm makes
decisions at the beginning of each time slot, for gamers who
begin to broadcast live game in the middle of a time slot, we
just transcode the original video to the basic bit-rate. As for
the newly-arrived viewers who arrive in the middle of a time
slot, we use the BBS (which will be described below) strategy
to handle their requests timely and dispatch the requests based
on the load-balancing principle.

To verify the effectiveness of our algorithm, we compare our
algorithm with four other alternatives, each of which consists
of a transcoding decision strategy and a bit-rate assignment
strategy. For four other alternatives, we suppose that the
platform always dispatches user requests based on the load-
balancing principle, which means the system is prone to direct
user requests to the datacenter with low workload.

In our simulations, we consider two transcoding decision
algorithms mentioned in [42], called Threshold and ALL.
Since both strategies have not made decisions on transcoding
parameters, the streams of selected channels are transcoded to
all the possible bit-rates lower than the original bit-rate in our
simulation:

1) Threshold, in which a service provider makes transcod-
ing decisions at the beginning of each time slot. Firstly,
a service provider filters the gamers with the number
of viewers higher than a predefined threshold, and then
applies transcoding service to the channels which are
hosted by selected gamers. In our simulations, we set
the threshold to be 50.

2) ALL, in which a service provider applies live transcoding
service to all online channels. In this case, a service
provider tends to reduce the total bandwidth cost and
improve viewer QoE by providing transcoding service
to all online channels.

Two typical bit-rate selection strategies mentioned in [44]
are used for comparison in our experiments:

1) Basic Bit-rate Selection (BBS), in which viewers are
always assigned with the lowest bit-rate that is equal
to or just above the basic bit-rate required by the game
genre. Under this strategy, a service provider tends
to ensure the basic requirement for each viewer, and
minimize the operational cost as much as possible.

2) Advanced Bit-rate Selection (ABS), in which a service
provider tends to provide better experience by providing
a higher bit-rate to each viewer. In our simulations, a
service provider assigns a bit-rate that is one level higher
than the basic bit-rate for each viewer. Therefore, the
service provider can offer a better experience to viewers
and probably attract more viewers. However, it may
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cause a higher operational cost.
Therefore, we have five strategies in comparison, namely,

(1) Threshold + BBS (2) Threshold + ABS (3) ALL + BBS (4)
ALL + ABS (5) our proposed OCTAD algorithm.
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Fig. 2. Number of Online Channels

In our simulations, we use the public dataset [42] to simulate
the behaviors of gamers and viewers in each time slot. Fig.
2 depicts the variation of the total number of online channels
over 2, 000 minutes. We can observe that the number of online
channels is higher than 5, 000 in most of the time. Specifically,
the peak value is even higher than 6, 500 channels.
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Fig. 3. Number of Online Viewers

Fig. 3 shows the evolution of the total number of online
viewers over 2, 000 minutes. From this figure, we can find
that in the peak time period, there are about 510, 000 online
viewers in the system. However, the total number of online
viewers varies dramatically over time, and the peak-to-valley
gap is about 250, 000.

B. Comparison of Operational Cost

Fig. 4 depicts the total operational cost incurred by six s-
trategies in the simulation period. From this figure, we can find
that ALL + ABS incurs the highest operational cost, and our
OCTAD algorithm achieves the lowest operational cost. The
operational cost incurred by our OCTAD algorithm is close to
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Fig. 4. Operational Cost

the optimal value with very small distance. Specifically, our
algorithm can reduce operational cost by 50% compared with
ALL + ABS, by 40% compared with Threshold + ABS, by
35% compared with ALL + BBS and by 25% compared with
Threshold + BBS.
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Fig. 5. Bandwidth Cost

The CLGVS service provider not only streams live game
videos to viewers, but also needs to transcode gamers’ original
streams to multiple versions. Therefore, the operational cost
consists of two parts, bandwidth cost and transcoding cost.
The comparison of bandwidth cost is shown in Fig. 5. From
this figure, we can find that the bandwidth cost of ALL + BBS
is the lowest among all strategies. According to our definition,
bandwidth cost is determined by the bandwidth price and
bandwidth consumption in each datacenter. Since ALL + BBS
assigns viewers with the basic bit-rate or a bit-rate just above
the basic bit-rate, it can achieve the lowest bandwidth cost.
The bandwidth cost incurred by Threshold + BBS is a little
bit higher than that of ALL + BBS. It is because that, although
Threshold + BBS and ALL + BBS apply the same bit-rate
selection algorithm, channels with viewers lower than pre-
defined threshold are not transcoded to the basic bit-rate, and
these viewers have no choice but select the original bit-rate.
As for ALL + ABS and Threshold + ABS, both of them are
the highest among all strategies, because they use the same
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bit-rate selection algorithm and always select a higher bit-rate
for viewers. By taking various factors into consideration when
making decisions, our OCTAD algorithm achieves a rather low
bandwidth cost, which is close to the lowest value.
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Fig. 6. Transcoding Cost

Fig. 6 depicts the transcoding cost under five different
strategies. In this figure, we can find that ALL + BBS and ALL
+ ABS incur the same transcoding cost and also the highest
among all strategies. Because these two combined algorithms
both apply the live transcoding service to all online channels
without taking other factors (e.g. channel popularity, game
genre, etc.) into account. Threshold + BBS and Threshold +
ABS just provide the live transcoding service to some popular
channels. Therefore, they incur relatively low transcoding cost.
The transcoding cost incurred by our OCTAD algorithm is
close to that of the optimal solution. More specifically, our
OCTAD algorithm cuts down more than 60% of transcoding
cost compared with both ALL + BBS and ALL + ABS. In
addition, OCTAD algorithm reduces over 50% of transcoding
cost compared with Threshold + BBS and Threshold + ABS.
These results prove that our proposed OCTAD algorithm can
reduce transcoding cost significantly for the service provider.

C. Comparison of Viewer QoE
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Fig. 7. Viewer QoE

In Fig. 7, we compare the viewer QoE under various
strategies in each time slot. ALL + ABS and Threshold +
ABS can provide the highest viewer QoE since these two
strategies always select a higher bit-rate, which brings much
better viewer QoE. While ALL + BBS and Threshold + BBS
are both prone to choose the basic bit-rate, which can only
ensure the basic experience. Thus, viewers under these two
strategies gain lower QoE. Moreover, ALL + BBS provides
the lowest bit-rate. Although, Threshold + BBS adopts the
same bit-rate assignment algorithm as ALL + BBS. Under
the transcoding strategy Threshold, the service provider just
applies live transcoding to top channels. In this case, viewers
who are watching less-popular channels can just receive raw
streams. That is why Threshold + BBS achieves a little bit
higher QoE compared with ALL + BBS. Finally, our OCTAD
algorithm can achieve almost the same QoE as ALL + ABS and
Threshold + ABS, which is much higher than QoE achieved
by ALL + BBS and Threshold + BBS.

D. Comparison of Delays
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Fig. 8. Service Delay

Fig. 8 shows the comparison of service delay under different
methods. From the figure, we can observe that our proposed
algorithm can keep service delay in a relatively low level.
For 75% of viewers, their service latency is lower than 300
milliseconds, which is tolerable for viewers who are watching
live videos. Most of the viewers experience almost the same
service delay, which proves that OCTAD algorithm can guar-
antee fairness among viewers. When the delay constraint is
satisfied, a further reduction of delay brings marginal benefits.

In our formulations, we define the service delay as the sum
of network delay and transcoding delay. Fig. 9 depicts the
comparison of transcoding delay under five strategies. Among
all strategies, ALL + ABS results in the highest transcoding
delay. Because ALL + ABS applies the live transcoding service
to all online channels and transcodes the original streams to
higher video bit-rates. According to the measurement work in
[8], a higher target bit-rate will cause a higher transcoding
delay. Furthermore, Threshold + BBS and Threshold + ABS
can achieve the lowest transcoding delay. It is because these
algorithms just provide transcoding service to some top chan-
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Fig. 9. Transcoding Delay

nels. However, by making transcoding decisions dynamically,
the transcoding delay under OCTAD algorithm is tolerable.
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Fig. 10. Network Delay

Fig. 10 displays the network latency under five different
strategies. For each viewer, the network delay is determined
by the network condition between a datacenter and a viewer.
Since the other four alternatives dispatch viewer requests to
a datacenter with the lowest workload without considering
the network conditions, these strategies incur much higher
network latency. Our proposed algorithm takes network condi-
tions into account when making datacenter selection. It is the
reason why our algorithm can achieve a much lower network
delay compared with other alternatives.

E. Impacts of Tunable Parameters

In our proposed algorithm, there are two tunable parameters
α and V . To investigate the impacts of these two parameters,
we conduct some further experiments. When making decision-
s, the value of α affects the tradeoff between operational cost
and viewer QoE. Firstly, we conduct a series of experiments
with various values of α to examine the influence of α. From
Fig. 11, we can observe that, when the value of α increases
from 0 to 3, the mean operational cost increases from 0.508$
to 0.521$. Fig. 12 shows that mean QoE increases with the
increase of α. When the value of α increases from 0 to 3, the
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mean QoE increases from 1.32 to 1.47. Intuitively, a higher
value of α allocates more weight to viewer QoE when OC-
TAD algorithm makes decisions, which will improve viewer
QoE. However, the side effect of a higher QoE is a higher
operational cost due to the increasing resource consumption.
When the value of α is higher than 0.6, the impact of α tends
to be stable. This means that even when we keep increasing
α, the influence of α is negligible. Anyway, a higher value of
α brings better viewer experience. It indicates that we should
choose the value of α skillfully, as a higher α incurs a higher
operational cost.

Another tunable parameter of OCTAD algorithm is V .
According to the Lyapunov optimization theory, V is a tunable
parameter which affects both virtual queue backlog and the
Lyapunov penalty. In this paper, the Lyapunov penalty consists
of operational cost and viewer QoE. Fig. 13 depicts the influ-
ence of the parameter V on the mean operational cost. In Fig.
13, when V increases from 0 to 2000, the mean operational
cost decreases from 0.44$ to 0.32$. In addition, viewer QoE
is another important system performance indicator. In Fig. 14,
when V increases from 0 to 2000, the mean viewer QoE keeps
rising from 1.08 to 1.2. But when we further increase the value
of V , the mean QoE will oscillate in a small range. This means
that the impact of V tends to be stable. Although with a higher
value of V , our algorithm can approach to the optimal value, a
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large value of V will increase the service latency significantly.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated the problem of providing cost-
effective live transcoding and game video delivery service to
gamers and viewers from the perspective of a CLGVS service
provider. Because the objectives of reducing operational cost
and improving viewer QoE are conflicting with each other, it
is hard to make optimal decisions. We formulated the problem
into a constrained stochastic optimization problem, whose
objective is to minimize operational cost while still ensure
good-enough service quality. By leveraging the Lyapunov
optimization framework, we derived an adaptive online algo-
rithm called OCTAD, which can help service providers make
live transcoding decisions, bit-rate assignment and datacenter
selection dynamically. Through a series of trace-driven simu-
lations, we evaluated the effectiveness of OCTAD. Compared
with other algorithms, our OCTAD algorithm can reduce op-
erational cost significantly while still guarantee good-enough
viewer experience. In our future work, we plan to implement
our algorithm in a real live game video streaming platform, and
try to combine live streaming with a cloud gaming platform.
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