
WIRELESS COMMUNICATIONS AND MOBILE COMPUTING
Wirel. Commun. Mob. Comput. 2016; 16:942–959
Published online 18 February 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/wcm.2579

RESEARCH ARTICLE

MatrixDCN: a high performance network architecture
for large-scale cloud data centers
Yantao Sun1, Min Chen2*, Limei Peng3, Mohammad Mehedi Hassan4 and
Abdulhameed Alelaiwi4

1 School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
2 School of Computer Science and Technology, Huazhong University of Science & Technology, Wuhan, China
3 Department of Industrial Engineering, Ajou University, Gyeonggi-do, South Korea
4 College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia

ABSTRACT

With the widespread deployment of cloud services, data center networks are developing toward large-scale, multi-path
networks. Conventional switching-oriented data center network meets difficulties in terms of scalability and flexibility
to support increasing bandwidth requirements for cloud services. To solve this problem, a simple and scalable architec-
ture, MatrixDCN, is proposed in this paper. MatrixDCN is an approximate non-blocking network, in which switches and
servers are arranged in rows and columns that compose a matrix structure. A MatrixDCN network can accommodate up
to hundreds of thousands of servers without bandwidth bottlenecks. Furthermore, the physical topology of a MatrixDCN
network can be designed consistently with its logic topology, which helps to reduce the complexity of the management
and maintenance of a data center. An efficient routing algorithm, named fault-avoidance routing (FAR), is well designed
for MatrixDCN to fully leverage the regularity in the topology. FAR builds two routing tables for a router. A BRT is built
based on local topology, and a novel negative routing table (NRT) is increasingly built based on learned partial network
failures, which really avoids the problem of network convergence and further shortens the calculating time of routing
tables. FAR also greatly reduces the size of routing tables by introducing NRTs at routers. Theoretical analysis and simu-
lations show that MatrixDCN has advantages on the scalability of topology, network throughput, and the performance of
FAR. Copyright © 2015 John Wiley & Sons, Ltd.

KEYWORDS

data center network; network architecture; routing method

*Correspondence

Min Chen, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
E-mail: minchen@ieee.org

1. INTRODUCTION

With the rapid development of cloud computing technolo-
gies [1], widely deployed cloud services such as Amazon
EC2 (Amazon.com, Inc., Seattle, WA, USA) and Google
search (Googleplex, Mountain View, CA, USA) bring
about huge challenges to data center networking (DCN)†.

A DCN is a facility used to house computer systems and
associated components such as telecommunications and
storage systems[wiki]. The cloud computing technology is
to put a large number of computing and storage resources
into a data center(cloud) and to draw out these resources

†In this paper, depending on the context, DCN represents data center

network and data center networking interchangeably.

on demands from a cloud by end users just like using
electric power.

Today’s data centers (DCs) require large-scale networks
with higher internal bandwidth and lower transfer delay,
but conventional networks cannot meet such require-
ments because of its limitations in their network archi-
tecture [2,3].

A layered multi-root tree architecture is commonly
used in conventional data centers, in which many layer 2
domains connect together via layer 3 networks, as shown
in Figure 1. A layer 2 domain consists of many servers that
are divided into subnets (i.e., virtual local area networks,
VLANs), and each subnet contains up to a few hundred
servers connected via layer 2 switches.

The conventional architecture cannot support a large-
scale data center with up to tens of thousands of servers in

942 Copyright © 2015 John Wiley & Sons, Ltd.



Y. Sun et al. MatrixDCN: a high performance architecture for cloud DCNs

Figure 1. A conventional network for data centers.

one site [3]. The main problem that limits the scale of a
DCN is a shortage of bandwidth in higher layers. In prac-
tice, the typical oversubscription ratio between neighbor
layers is 1:5 or more, and at the top layer, it might reach
1:80 to 1:240 [4]. Although the most advanced and fastest
switches and routers are adopted in this architecture, only
50% of the aggregate bandwidth of edge networks can be
supported in the top layer [5]. It is no doubt that the top
layer is becoming a bottleneck for the entire network, espe-
cially in today’s cloud computing environment, when the
requirement intra-network traffic is increasing rapidly.

In recent years, some new architectures have been pro-
posed to overcome the limitation of conventional DCNs
[6], such as fat-tree and BCube. Fat-tree [7] is a switch-
centric network, which has better compatibility with con-
ventional networks. A conventional data center is easier
upgraded to a fat-tree network. BCube [8] is a server-
centric networks, which has better scalability to support
larger-scale data centers. But its network routing occupies
some resource of each server, which results in decreasing
performance of servers.

To accommodate tens of thousands of servers, large
number of switches or servers with routing functional-
ity are required in a DCN. For example, to accommodate
27 648 servers, a fat-tree network requires 2880 switches;
each of which has 48 switching ports. It is unlikely that
generic routing protocols such as Open Shortest Path First
(OSPF) and Intermediate System-to-Intermediate System
(IS-IS) can be scaled to support several thousands of
routers [9], so some specific routing protocols are proposed
for these architectures. These specific routing protocols
have better performance than the generic routing proto-
cols because they are delicately designed according to the
topological feature of the network architecture.

In the future, an extra-large-scale DCN may be com-
posed of several heterogeneous networks, and each
network employs a different architecture [10]. Several
network architectures coexist in a DC. From the cost-
effective point of view, a desirable routing device should
have agility for supporting various mainstream network
architectures and related routing protocols, which enables
the reuse of the routing device when the architecture
of a DCN is changed. But in fact, the proposed rout-
ing algorithms for various architectures are so differ-
ent, which causes difficulty to renovate a routing device
to support multiple existing routing protocols. Further-
more, these routing methods have poor compatibility
with current routing protocols because the structure and
query method of their routing table, fault-tolerance, and
routing mechanism are all different with current rout-
ing protocols. It is a challenging issue to implement
these specific routing protocols through modifying the
current routing protocols. In addition, to deal with link
failures, these specific routing methods of new net-
work architectures introduce complicated fault-tolerance
mechanisms, which makes these routing methods more
complex [7,8].

To support large-scale cloud data centers with good
scalability, we propose a novel network architecture,
MatrixDCN, in this paper. A MatrixDCN network is a
switch-centric network and is composed of three types of
switches, that is, access switches (ASes), row switches
(RSes), and column switches (CSes). ASes connect servers
to a network and are organized as a matrix with multi-
ple rows and columns. RSes/CSes link ASes that lie in a
row/column together.

Wirel. Commun. Mob. Comput. 2016; 16:942–959 © 2015 John Wiley & Sons, Ltd. 943
DOI: 10.1002/wcm



MatrixDCN: a high performance architecture for cloud DCNs Y. Sun et al.

Furthermore, to solve several problems on routing of
DCNs mentioned previously, including adaptability, effi-
ciency, and complexity of routing methods, we propose
a routing method, named fault-avoidance routing (FAR)
method, for MatrixDCN. Besides a common routing table,
named basic routing table (BRT), FAR introduces a novel
routing table, named negative routing table (NRT). The
structure of a NRT is the same as a BRT, but its route entries
present avoiding routes that pass through some failed links.
FAR looks up both a BRT and NRT to decide a route for
incoming packets. FAR is also a generic routing method.
By slight revises, it can be used in many kinds of network
architectures with regular topologies.

As opposed to the existing DCN architectures,
MatrixDCN has the following advantages:

� MatrixDCN can support large-scale networks with-
out bandwidth bottlenecks. With the same network
performance, MatrixDCN can support 4/3 to two
times more servers than fat-tree in a data center.

� The physical topology of a MatrixDCN network
can be designed consistently with its logic topology,
which helps to reduce the complexity of management
and maintenance in a DCN.

� FAR builds BRTs based on local topology and
increasingly builds NRTs based on learned partial
network failures, which avoids the problem of net-
work convergence and reduces the complexity of
calculating routes. The time of calculating routes is
shortened to hundreds of milliseconds from tens of
seconds for large-scale DCNs.

� By introducing NRT, FAR decreases the size of rout-
ing tables. In a DC, which contains tens of thousands
of severs, a FAR routing table only requires tens of
route entries.

The main contributions of this paper are two-fold: (i)
introduce a new non-tree network architecture for large-
scale DCNs and (ii) propose a new high-efficient routing
method for regular network topologies.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the state-of-art research stud-
ies on DCN architectures and related routing methods.
Section 3 presents the structure and addressing scheme
of MatrixDCN. Section 4 introduces FAR, including its
framework, the construction of routing tables, and its
routing procedure. Section 5 introduces how to deploy a
MatrixDCN network. Section 6 analyzes the the perfor-
mance of MatrixDCN on its scalability, network through-
put, and the performance of FAR. Section 7 verifies
the performance of MatrixDCN through OPNET simula-
tions (Riverbed Technology, San Francisco, CA, USA).
Section 8 concludes this paper.

2. RELATED WORK

To solve bandwidth bottleneck and network scalability
issues, some novel network architectures for DCNs have
been proposed over the past several years. Usually, these

network structures can be divided into three types, switch-
centric networks, server-centric networks, and irregular
networks.

Fat-tree [7] is a typical switch-centric network. In 2008,
M. Al–Fares et al. proposed the fat-tree network on the
conference of Special Interest Group on Data Communica-
tion (SIGCOMM). Fat-tree is a rearrangeable non-blocking
multi-path network in which there are many equal-cost
paths between adjacent layers. It eliminates the bandwidth
bottleneck in the core layer. Using 48-port switches, a fat-
tree network can accommodate up to 27 648 servers. To
support non-blocking communication, the fat-tree archi-
tecture requires a large number of switches in the core
and aggregation layers and wires to interconnect those
switches, which increase deployment cost, energy con-
sumption, and management complexity. To solve this prob-
lem, VL2 [4] replaces cheap core and aggregation switches
in fat-tree with expensive high-speed electrical switches.

DCell [11] and BCube [8] are two types of server-centric
networks that were proposed by Microsoft Research Asia
(MSRA). DCell uses servers with multiple network ports
and mini-switches to construct its recursively defined
architecture. The weakness of DCell is its low bisection
bandwidth, which may cause traffic jam in network. To
solve traffic jam in DCell, MSRA proposed BCube, which
provides more bandwidth in the top layer. In BCube, multi-
port servers connect with multiple switches deployed in
each layer. DCell and BCube can support extra-large-scale
networks with more than 100 000 of servers. FiConn [12]
shares the same design principle as DCell, but limits a
server node’s degree to two. DPillar is built of two types of
devices, n-port switches and dual-port servers [13]. Visu-
ally, it looks like the 2 k columns of servers, and switches
are attached to the cylindrical surface of a pillar. In 2011,
Deke Guo et al. proposed an expansible network struc-
ture called Bidimensional Compound Networks (BCN) for
compound graphs [14]. Compared with the structures pre-
viously, BCN is more complicated and cannot eliminate
traffic bottleneck in a network.

Some studies focus on irregular topologies. Scafida [15]
is inspired by the scale-free Barabási and Albert topolo-
gies. Curtis et al. proposed ReWire [16] that is a framework
to design, upgrade, and expand DCNs. ReWire uses a local
search to find a network that maximizes the bisection band-
width while minimizing the latency and satisfying a group
of user-defined constraints.

Some new communication technologies were intro-
duced to DCN. To reduce networking cost, optical circuit
switches are used in Helios [17] and c-Through [18] to
build a hybrid electrical/optical architecture. Wireless tech-
nology is also used in DCNs. In 2011, Daniel Halperin
et al. proposed adding multi-gigabit wireless links to
the wired DCN to relive network congestion and thus
to improve performance [19]. In 2012, Xia Zhou et al.
proposed a new wireless primitive for data centers, 3D
beamforming, where 60 GHz signals bounce off data center

944 Wirel. Commun. Mob. Comput. 2016; 16:942–959 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



Y. Sun et al. MatrixDCN: a high performance architecture for cloud DCNs

ceilings thus establishing indirect line-of-sight between
any two racks in a data center [20].

In practice, most of today’s data centers are based on
switch-centric architectures. Although their scalability and
flexibility are not good enough, switch-centric architec-
tures have innate advantages: they are similar to a tra-
ditional network architecture, which makes it easier to
upgrade traditional switches to support them. Most of the
network components and protocols in conventional net-
works can be used in switch-centric architectures directly
or with a slight modification.

Some generic routing methods for DCNs have been pro-
posed such as transparent interconnection of lots of links
(TRILL) [21], FabricPath [22], and Seattle [23]. The aim
of these routing methods is mainly to solve the problem
of layer 2 inter-connection of DCNs. As the basis of these
routing method is still the link-state routing protocols, that
is, OSPF or Intermediate System-to-Intermediate System,
they are also not applicable to a large-scale DCN with tens
of thousands of severs.

Smart Path Assignment In Networks (SPAIN) [24] and
NetLord [25] demonstrate a new thinking about layer 2
interconnection based on existing switch devices in an arbi-
trary topology. Within these methods, a set of paths are
pre-computed off-line for each pair of source–destination
hosts by exploiting the redundancy in a given network
topology. Then, these paths are merged into a set of trees,
and each tree is mapped on a separate VLAN. In this way,
a proxy application is installed on the hosts, and the proxy
chooses several VLAN paths transmitting packets to the
destination host. The advantage of this method is that mul-
tipath is implemented, and routing load is balanced on
multiple paths in an arbitrary topology. Its drawbacks are
inflexibility to changes in topology and the modifications
to hosts.

Besides these generic routing algorithms, researchers
proposed some dedicated routing algorithms for some net-
work architectures. These routing algorithms leverage the
regularity in the topology, so they have higher efficiency on
route computing and packet forwarding.

Several routing solutions are proposed for fat-tree net-
works. The paper [7] proposes two-level routing to spread
outgoing traffic on multiple equal cost paths. When mak-
ing a routing decision, a switch looks up a main routing
table first. If no route is hit, then the switch looks up a
small secondary table. To implement fault-tolerance in a
routing procedure, fat-tree detects link failures by a Bidi-
rectional Forwarding Detection session [26] and broadcasts
those failures between switches. The paper [27] presents
a dynamic local rerouting methodology for fat-tree net-
works. It can guarantee connectivity for up to and including
k � 1 benign faults using either deterministic or adap-
tive routing, where k is half the number of ports in
the switches. PortLand [28] is a layer 2 network solu-
tion specifically for fat-tree network. It uses a lightweight
location discovery protocol that allows switches to dis-
cover their location in the topology. In PortLand, every
end host is assigned an internal pseudo Mac that encodes

the location of the end host. PortLand leverages the
knowledge of network structure within layer 2 routing,
which helps that PortLand has smaller switching over-
head, more efficient forwarding, and higher fault tolerance
than others.

BCube is a sever-centric network architecture in which
servers are responsible for both computing service and
routing function. In BCube [8], a source routing protocol
called BCube Souce Routing (BSR) is deployed on servers.
BSR has the abilities of load balance and fault-tolerance.
When a new flow comes, the source sends probe pack-
ets over multiple parallel paths and selects the best path
according to probe responses. In general, using a source
routing protocol in a large-scale network may result in too
much network overhead and too long connection time.

ALIAS [29] is an addressing and communication proto-
col that automates topology discovery and address assign-
ment for the hierarchical topologies. ALIAS first assigns
hierarchical, topologically meaningful labels to hosts and
then enables communication over these labels. ALIAS has
good fault-tolerance. It dynamically recovers from arbi-
trary failures, without requiring modifications to hosts or
to commodity switch hardware.

Compared with generic routing methods, topology-
aware routing algorithms leverage the regularities in topol-
ogy in route computing and thus have a higher efficiency.
The shortages of those topology-aware routing algorithms
are as follows: 1) they are closely designed for the special
topology of networks and 2) their fault-tolerance mecha-
nisms are complicated.

3. MATRIXDCN ARCHITECTURE

We propose a novel network architecture, MatrixDCN,
for large-scale data centers with tens of thousands of
servers. Its structure is quite simple and clear and has good
scalability and flexibility.

Figure 2. An access switch (AS) in a 3D MatrixDCN network.

Wirel. Commun. Mob. Comput. 2016; 16:942–959 © 2015 John Wiley & Sons, Ltd. 945
DOI: 10.1002/wcm



MatrixDCN: a high performance architecture for cloud DCNs Y. Sun et al.

Figure 3. A 2� 3 MatrixDCN network.

3.1. Multi-dimension network

In a MatrixDCN network, ASes‡ are deployed as a logical
multi-dimensional matrix, and each AS connects a group
of servers, so a MatrixDCN network can accommodate a
huge number of servers. For example, a 40 � 40 � 40 3D
MatrixDCN accommodates 64 000 ASes, and the network
has 640 000 servers if an AS connects only 10 servers.

In each dimension, a MatixDCN network can be viewed
as many rows of ASes. Each row deploys with a group of
RSes, and each RS connects all of the ASes together in
a row. In other works, an AS connects to the RSes of the
same row in each dimension. For example, in a d1�d2�d3
3D network, there are d2 � d3 rows, and each row has d1
ASes in the first dimension. Figure 2 shows an AS that
connects to the RSes in each dimension in a 3D network.

A 2D MatrixDCN network can satisfy the requirement
of scale in network capacity for most of real scenes. For
convenience, we call the rows and RSes in dimension 2
as columns and CSes, respectively, in a 2D MatrixDCN
network. Figure 3 shows an example of a 2�3 MatrixDCN.
A 2D MatrixDCN is a very flexible network structure and
can be deployed with any number of rows/columns and any
number of RSes/CSes in one row/column according to the
requirements of network scale and bandwidth, in practice.

Like BCube, MatrixDCN can be used to build an extra-
large-scale DCN. Suppose that all of the switches are
N-port switches, then a k-dimensional MatrixDCN net-
work can support Nk ASes. If the ports of an AS are divided
into kC 1 equal parts to connect servers and RSes in each
dimension, respectively, then each AS links N=.k C 1/
servers, and each row has N=.k C 1/ RSes. Thus, the
network can accommodate a maximum of N.kC1/=.k C
1/ servers and requires kNk=.k C 1/ RSes. The ratio of
servers to switches is N=.2k C 1/. If the network has two

‡AS, RS, and CS are the singular forms of ASes, RsSes and CSes,

respectively.

dimensions, the ration is N=5, which is equal to that of
fat-tree.

In a 2D MatrixDCN network, if the bandwidth between
an AS and its connected servers (access bandwidth, AB)
is equal to the bandwidth between the AS and its con-
nected RSes (row bandwidth, RB) and the bandwidth
between the AS and its connected CSes (column band-
width, CB), that is, AB D RB D CB, the MatrixDCN
network is an approximate non-blocking network. Gener-
ally, in a k-dimensional MatrixDCN network, if AB is equal
to RB in each dimension, the network is an approximate
non-blocking network.

If it is known in advance that most traffic is the local
traffic whose source and destination lie in the same subnet,
then less RB and CB is required; more ports of an AS can
be used to link servers, and more servers can be accom-
modated in a network. Besides, most commodity switches
have several uplink ports that have a higher speed for
switch cascading. In general, the speed ratio of uplink ports
to downlink ports is 10:1. For an AS, if its uplink ports
are used to link CSes and RSes, and its downlink ports
are all used to link servers, more servers can be accom-
modated in a MatrixDCN network. In this case, RSes and
CSes should be replaced with faster switches to match the
speed of ASes’ uplink ports.

3.2. Addressing in MatrixDCN

As shown in Figure 3, each device’s IP address is
configured according to its location in a 2-dimensional
MatrixDCN network. The Internet Protocol (IP) addresses
of RSes, CSes, and ASes are set to 10.rno.0.x, 10.0.cno.x
and 10.rno.cno.1, respectively. The IP addresses of servers
are set to 10.rno.cno.x.x > 1/. The rno and cno are the row
number and column number of a device in the matrix.

As length of IPv4 address is too short, there is a trouble
when applying the addressing method previously to a k-
dimensional MatrixDCN network. One solution is to adapt
longer IPv6 addressing method. Another solution is using

946 Wirel. Commun. Mob. Comput. 2016; 16:942–959 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



Y. Sun et al. MatrixDCN: a high performance architecture for cloud DCNs

small segment of IPv4 address to indicate a row number.
For example, in a 3D MatrixDCN network, three row num-
bers and one server number share the last 24 bits in an IPv4
address, so a number only occupy 6 bits other than 1 bytes
in a 2D network.

Encoding the location and type of a device into its
IP address helps to determine the adjacency between the
devices and further simplifies the network routing scheme.
In addition, that each switch is assigned to only one IP
address greatly simplifies the network configuration and
management.

4. FAR ROUTING

A distributed routing method, FAR, is proposed for
MatrixDCN. FAR simplifies route computing by leverag-
ing the regularity in network topologies and solves the
problem of lack of adaptability in existing routing meth-
ods for DCNs. Compared with other routing methods, FAR
is simpler and more efficient and has good fault-tolerance
performance.

FAR has good adaptability. It can be used in many kinds
of network topologies by slight revises. FAR only requires
that a DCN has a regular topology, and network devices,
including routers, switches, and servers, are assigned IP
addresses according to their location in the network. In
other words, we can locate a device in the network accord-
ing to its IP address. Note that these assumptions are
generally true for most DCNs. To run FAR in a DCN,
each router or switch with routing functionality should be
deployed with a FAR instance.

4.1. The framework of FAR

FAR is divided into three parts: 1) a link state learning
unit that learns all the link failures in the entire network;
2) a routing table building unit that builds up routing
tables according to learned link states; and 3) a routing
table querying unit that looks up routing tables to forward
packets. The framework of FAR is shown in Figure 4.

The link state learning unit consists of four modules. In
the neighbor/link detection module (M1), switches detect
their neighbor switches and connected links by a heartbeat

mechanism. The device learning module (M2) learns all
the active switches in the entire network and then infers
failed switches according to the network topology. In
the link failure inferring module (M3), switches infer
their invisible neighbors and related failed links. If a link
between router A and its neighbor B breaks, then B cannot
be detected by A through a heartbeat mechanism. In this
case, B is called an invisible neighbor of A. In the link fail-
ure learning module (M4), every switch learns all the failed
links in the entire network.

Different with other routing methods, FAR uses two
routing tables, a BRT and a NRT. The function of a BRT
is the same as the routing table in conventional routing
methods, telling FAR what paths are available to reach a
destination node. Oppositely, NRT tells what paths FAR
should avoid because those paths pass through some failed
links. FAR looks up the two routing tables to get the final
applicable paths. BRT building module (M5) builds up a
BRT for a router depending on its neighbors and links
detected in M1. NRT building module (M6) builds up an
NRT for a router depending on the failed links learned in
M4. Routing table querying module (M7) looks up both the
NRT and BRT and then combines query results together to
forward incoming packets.

4.2. Limited state machine of FAR

Figure 5 shows how a FAR router works by its finite state
machine(FSM). There are 16 key steps in the FSM:

� Step 1: When a router starts up, it starts a hello thread
and then starts ND (neighbor detection) timer (3 s).
Next, the router goes into ND state.

� Step 2: In the ND state, if a router received a hello
message, then it performs a hello-message processing
and goes back to the ND state.

� Step 3: When the ND timer is over, a router goes into
ND-FIN (neighbor detection finished) state.

� Step 4: A router starts the LFD (link failure detec-
tion) thread and DFD (device failure detection) thread
and sends device announcement (DA) and device link
request (DLR) messages to all of its active ports.
Then, the router goes into listen state.

Figure 4. The routing framework of FAR.

Wirel. Commun. Mob. Comput. 2016; 16:942–959 © 2015 John Wiley & Sons, Ltd. 947
DOI: 10.1002/wcm



MatrixDCN: a high performance architecture for cloud DCNs Y. Sun et al.

Figure 5. Finite state machine of FAR.

� Step 5–8: If a router receives a message then goes into
a corresponding state to process the received message.

� Step 9–12: After a router performs a message process-
ing, it goes back to listen state.

� Step 13: Hello thread produces and sends hello mes-
sages to all its ports periodically.

� Step 14: LFD thread calls link-failure-detection pro-
cessing to check link failures in all links periodically.

� Step 15: DA thread produces and sends DA messages
periodically (30 min).

� Step 16: When DFD thread starts up, it sleeps a short
time (30 s) to wait for a router learning all the active
routers in the network. Then, the thread calls the
device-failure-detection processing to check device
failures periodically (30 min).

4.3. Learn link states

To avoid the failed links when forwarding packets, each
switch needs to know the states of all links, active or failed.
FAR spreads all the switches and link-state changes in the
network to each switch by a flooding method. To avoid a
message looping in the network, each switch only forwards
unknown switches and link failures to their neighbors. The
flooding method insures that each switch can learn all the
switches and link failures because a switch will receive a
message multiple times from its neighbors. The procedure
of learning link states is divided into four steps.

(1) Neighbor Discovery
Adjacent switches send hello messages (heartbeat)
to each other for detecting their neighborhood rela-
tionship. M1 sends hello messages periodically to
all of its ports and receives hello messages from its
neighbor routers. M1 detects neighbor switches and
directly-connected links according to the received
hello messages and stores its neighbors and links in
a local database.

(2) Device Learning
FAR learns all the switches in the entire network
through DA and DLR messages. When a switch
starts, it sends a DA message announcing itself to
its neighbors and a DLR message requesting the
knowledge of switches and links from its neighbors.
When M2 receives a DA message, it stores unknown
switches encapsulated in the message into its local
database and then forwards them to its neighbors
except for the incoming one. M2 replies a DLR
message with a DA message that encapsulates all
the routers in its database. DAs will be repeatedly
published by a long period such as 30 min.

When M2 has learned all the active switches, it
infers failed switches in the network by leveraging
the regularity in topology. For example, we suppose
that the node 10.1.1.1 fails, so it can’t be detected by
node 10.1.0.1 through the heartbeat mechanism. But
according to the regularity in topology and assign-
ment rules of IP address in MatrixDCN, 10.1.0.1
can infer that there exists a failed AS whose IP
address is 10.1.1.1, and the AS is in failure.

(3) Link Failure Inferring
Because a device’s location has been coded into its
IP address, it can be determined whether two routers
are adjacent according to their IP addresses. For
example, we can infer that CS 10.0.1.1 (Sa), and AS
10.1.1.1 (Sb) are adjacent. If Sa learns the existence
of Sb through a DA message but Sa cannot detect Sb
through M1 module, Sa can infer that Sb is an invis-
ible neighbor of Sa, and a failed link lies between Sa

and Sb. Based on this idea, M3 infers all the invisible
neighbors of a router and related link failures.

(4) Link Failure Learning
FAR requires the knowledge of link failures in the
entire network. It learns link failures through link
failure announcement (LFA) messages and DLR

948 Wirel. Commun. Mob. Comput. 2016; 16:942–959 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



Y. Sun et al. MatrixDCN: a high performance architecture for cloud DCNs

messages. When a switch starts, it sends a DLR
message to request the knowledge of routers and
links from its neighbors. Besides a DA message,
M4 answers an LFA message that encapsulates all
the link failures in its database for response. M4
also broadcasts it local link failures to its neighbors
through an LFA message. When M4 receives an
LFA message, it stores unknown link failures encap-
sulated in the message into its local database and
then forwards them to its neighbors except for the
incoming one.

4.4. Basic routing table

By leveraging the regularity in topology, FAR calculates
routes for any destination and builds a BRT for a router
through local topological knowledge. M5 module builds up
a BRT for a router depending on detected neighbors and
links in M1.

In 2D MatrixDCN, RSes/CSes are responsible for for-
warding packets between columns/rows, respectively, and
ASes decide whether a packet is to be forwarded to an
RS, a CS, or the destination server directly. Communi-
cation between servers within a subnet only requires the
AS’ participation of that subnet. When servers lie in the
same row/column, their communication requires the par-
ticipation of the RSes/CSes in that row/column besides
ASes. For example, the communication path between the
servers 10.1.1.2 and 10.1.2.2 in Figure 3 is: 10.1.1.2 !
A.10.1.1.1/ ! RS.10.1.0.1/ ! B.10.1.2.1/ ! 10.1.2.2.
The most complex communication between the servers
appears in different rows and columns. This type of path
requires the participation of RSes, CSes, and ASes. For
example, if server 10.1.1.2 communicates with 10.2.2.2 in
Figure 3, there are two groups of routing paths. One group
is CS-first: 10.1.1.2 ! A ! CS ! C ! RS ! D !
10.2.2.2. The other group is RS-first: 10.1.1.2 ! A !
RS! B! CS! D! 10.2.2.2.

The routes discussed previously are described through
BRTs. Different types of switches have correspondingly
different BRTs. First, we discuss the BRT of an RS. If a
packet with the destination address 10. � .cno.� arrives at
RS 10.rno.0.i, the RS should forward it to the next hop, that
is, the AS 10.rno.cno.1. Thus, in an m� n MatirxDCN, the
BRT of RS 10.rno.0.i looks like the following:

Destination/mask Next hop

10.0.1.0=255.0.255.0 10.rno.1.1
10.0.2.0=255.0.255.0 10.rno.2.1

: : :

10.0.n.0=255.0.255.0 10.rno.m.1

Because MatrixDCN is a symmetrical architecture, the
BRT of a CS is similar to that of an RS. Here, we do not dis-
cuss BRTs of CSes. Next, we discuss the BRT of an AS. If a
packet with destination 10.r2.c2.� arrives at AS 10.r1.c1.1,
there are four cases. 1) r1 D r2 and c1 D c2, which means
that the packet arrives at the destination subnet; thus, the
AS will directly send the packet to the destination server

through layer 2 switching. 2) r1 D r2, c1 ¤ c2, which
means that the destination server lies in the same row with
the AS; thus, the AS will forward the packet to an RS
10.r1.0.�. 3) r1 ¤ r2, c1 D c2, which means that the
destination server lies in the same column with the AS;
thus, the AS will forward this packet to a CS 10.0.c1.�.
4) r1 ¤ r2 and c1 ¤ c2, which means that the destina-
tion lies in a different row and column; thus, the AS will
forward this packet to anyone of the RSes 10.r1.0.� or
CSes 10.0.c1.�. So the BRT of AS 10.r1.c1.1 looks like the
following:

Destination/mask Next hop

10.r1.0.0=255.255.0.0 10.r1.0.�
10.0.c1.0=255.0.255.0 10.0.c1.�
10.0.0.0=255.0.0.0 10.r1.0.�
10.0.0.0=255.0.0.0 10.0.c1.�

In the table previously, 10.r1.0.� represents the set of
RSes in row r1. Therefore, each line denotes a group
of route entries, and each RS corresponds to one route
entry. Similarly, 10.0.c1.� represents the set of CSes in
column c1.

Now, we discuss the computational complexity of a
BRT. Because a router calculates its BRT entries only using
the information of neighbor nodes and independent of the
scale of a network, the calculation consumes constant time
and memory; it can be deduced that the time and space
complexity of calculating route entries for a neighbor node
are both O(1). The total time complexity for all neighbor
nodes is O(N), where N is the number of neighbor nodes.
Because we do not need additional memory, the total space
complexity is still O(1).

The BRT in k-dimensional MatrixDCN (k > 2) is very
similar to 2D MatrixDCN, so we do not discuss it in
this paper.

4.5. Negative routing table

Because link failures are not considered while calculating
a BRT, the routes in BRTs cannot avoid failed links. There
are two methods to solve this problem. One is to tell a
switch what hops, that is, paths; it can forward packets,
and another one is to tell a switch what hops; it cannot.
Conventional routing methods such as OSPF and Rout-
ing information Protocol (RIP) are all based on the first
method. In FAR, the second one is used. FAR uses an NRT
to exclude the routing paths that pass through some failed
links from the paths calculated by BRTs. The M6 module
builds up an NRT for a router depending on its learned link
failures in M4.

Compared with conventional routing method, using an
NRT to avoid failed links in a multiple-path network is sim-
ple and can decrease the size of routing tables remarkably.
For example, in Figure 6, if the network has no failures,
the routing table of node 10.1.48.1 has 16 route entries
as follows:

Wirel. Commun. Mob. Comput. 2016; 16:942–959 © 2015 John Wiley & Sons, Ltd. 949
DOI: 10.1002/wcm



MatrixDCN: a high performance architecture for cloud DCNs Y. Sun et al.

Figure 6. An example of multiple paths network.

Destination/mask Next hop

10.1.0.0=255.255.0.0 10.1.0.1
10.1.0.0=255.255.0.0 10.1.0.2

: : :

10.1.0.0=255.255.0.0 10.1.0.16

If the link between node 10.1.1.1 and 10.1.0.2 fail, in
order to avoid this failed link for communication from
subnet 10.1.48.0/24 to subnet 10.1.1.0=24, in conventional
routing methods, node 10.1.48.1 should add 15 additional
route entries as follows:

Destination/mask Next hop

10.1.1.0=255.255.255.0 10.1.0.1
10.1.1.0=255.255.255.0 10.1.0.3

: : :

10.1.1.0=255.255.255.0 10.1.0.16

The previous entries tell the switch that the traffic to sub-
net 10.1.1.0=24 can be forwarded to 10.1.0.1, 10.0.3, . . . ,
and 10.1.0.16 except for 10.1.0.2.

But in FAR, only one route entry is needed:

Destination/mask Next hop

10.1.1.0=255.255.255.0 10.1.0.2

It tells the router, for the traffic to subnet 10.1.1.0=24,
the next hop cannot be 10.1.0.2.

The M6 module builds up its NRT for a switch depend-
ing on the link failures learned in M4. Next, we illustrate
how a switch builds its NRT in a 2D MatrixDCN network.
In MatrixDCN, only an AS requires an NRT. NRT entries
are related to the location of link failures.

We divide all the links in a 2D MatrixDCN network into
three catalogs: row links, column links, and access links.
Row links connect ASes and RSes; column links connect
ASes and CSes; and access links connect ASes and servers.
We explicitly call the links connected to an AS as the links
of the AS.

We use Aij to denote the AS at the cross position of the
ith row and the jth column. Ri denotes all of the RSes in
the ith row. Ci denotes all of the CSes in the ith column.

R.Aik/ and C.Aik/ denote the set of RSes and CSes that the
failed links of Aik connect to, respectively.

The location of link failures affects routing decision of
ASes. For AS Aij, there are four cases of link failures: 1)
some of links of Aij fail; 2) some of links of another AS Aik

in the same row fail; 3) some of links of another AS Alj in
the same column fail; and 4) some of links of another AS
Alm, which lies in a different row and column, fail.

For case 1, Aij will directly remove route entries related
to failed links from its BRT. For example, if link Aij $

RS.10.i.0.1/ fails, the following two entries should be
removed from the BRT of Aij.

Destination/mask Next hop

10.i.0.0=255.255.0.0 10.i.0.1
10.0.0.0=255.0.0.0 10.i.0.1

Cases 2 and 3 are two symmetrical cases, so we only dis-
cuss case 2. In case 2, if some of row links of Aik fail, they
will affect the routing of the packets whose destination lie
in the kth column because these packets will pass through
Aik. So we should remove the paths relevant to those failed
links. The paths to be avoided are stored in the NRT of Aij

as follows:

Destination/mask Next hop

10.0.k.0=255.0.255.0 R.Aik/

The previous route entry means that R.Aik/ should
be excluded from the next hops for the destination
10.0.k.0=255.0.255.0. We call such a route entry a negative
route entry.

In case 2, if a part of the column links of Aik fails, these
failed links will not affect routing of Aij. But if all of the
column links of Aik fail, it is obvious that Aik cannot act
as an intermediate transmitting node between Aij, and the
nodes lied in the kth column; thus, all of the RSes on the
ith row should be excluded from the next hops with the
destination 10.0.k.0=255.0.255.0, which is expressed in the
NRT of Aij as follows:

Destination/mask Next hop

10.0.k.0=255.0.255.0 Ri

For case 4, if a part of the row or column links of Alm

fails, these failed links will not affect routing of Aij. But if
all row links of Alm fail, to avoid packets passing through
the row links of Alm, Aij should not transfer packets whose
destination is Alm to its row links. So, the following entries
should be added to the NRT of Aij:

Destination/mask Next hop

10.l.m.0=255.255.255.0 Cj

950 Wirel. Commun. Mob. Comput. 2016; 16:942–959 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



Y. Sun et al. MatrixDCN: a high performance architecture for cloud DCNs

Similarly, if all the column links of Alm fail, the follow-
ing entries should be added to the NRT of Aij:

Destination/mask Next hop

10.l.m.0=255.255.255.0 Ri

By means of the rules previously, FAR can increasingly
build up an NRT based on partial link failures that a router
has learned, without waiting for the network to approach
the state of convergence.

Now, we discuss the computational complexity of a
NRT. An AS calculates NRT entries based on received link
failures. When an AS receives a link failure, it performs
one time of calculating NRT entries, and the calculation
consumes constant time and space. So the time and space
complexity of NRT entries are both O(1) for a link failure.

The NRT in k-dimensional MatrixDCN (k > 2) is very
similar to 2D MatrixDCN, so we do not discuss it in
this paper.

4.6. Lookup routing tables

FAR looks up both a BRT and an NRT to decide the next
hop for a forwarding packet. First, FAR takes the destina-
tion address of the forwarding packet as a criterion to look
up route entries in a BRT based on longest prefix match.
All the matched entries are composed of a set of candidate
entries. Second, FAR looks up route entries in an NRT also
taking the destination address of the forwarding packet as
criteria. In this lookup, there is no regard to longest pre-
fix match, and any entry that matches the criteria would be
selected and composed of a set of avoiding entries. Third,
a set of applicable entries is composed of the candidate
entries minus the avoiding entries. At last, FAR sends the
forwarding packet to any one of the applicable entries. If
the set of applicable entries is empty, the forwarding packet
will be dropped.

We take the following example to illuminate a rout-
ing decision procedure. In this example, we suppose that
the link between 10.1.0.1 and 10.1.2.1 has failed in a
2D MatrixDCN network. Next, we look into how node
10.1.1.1 forwards a packet to the destination 10.2.2.2.

(1) Calculate candidate hops. 10.1.1.1 looks up its BRT
and obtains the following matched entries:

Destination/mask Next hop

10.0.0.0=255.0.0.0 10.1.0.1
10.0.0.0=255.0.0.0 10.0.1.1

So the candidate hops = f10.0.1.1, 10.1.0.1g.
(2) Calculate avoiding hops. 10.1.1.1 looks up its NRT

and obtains the following matched entries:

Destination/mask Next hop

10.0.0.0=255.0.0.0 10.1.0.1

So the avoiding hops = f10.1.0.1g.

(3) Calculate applicable hops. The applicable hops are
candidate hops minus avoiding hops. So the applica-
ble hops = f10.0.1.1g.

(4) Finally, 10.1.1.1 forwards the packet to the next hop
10.0.1.1.

5. DEPLOYMENT

As a 2D MatrixDCN network is big enough to support
the requirement of scale in DCN, we just introduce how
to deploy a 2D MatrixDCN network in this section. The
deployment of a 2D MatrixDCN network is very easy. In
2D networks, switches and servers are deployed on racks,
and racks are arranged in rows. An AS and its connected
servers are deployed on a server rack; RSes in a row and
CSes in a column are deployed on an RS rack and a CS
rack, respectively. Devices between racks are connected
together via twisted-pair wires or optical cables. All row
links of an AS are bundled together to connect each RS
in the same row. Correspondingly, all column links of an
AS are bundled together to connect each CS in the same
column. As shown in Figure 7.

In Figure 7, only two server racks, two CS racks, and
one RS rack are depicted, and other racks are omitted.
Figure 7 shows that physical deployment of devices in a
MatrixDCN network is consistent with logical topology of
the network, which is helpful to reduce the complexity of
network management and maintenance.

6. NETWORK PERFORMANCE
ANALYSIS

In this section, we discuss the performance of MatrixDCN
from the perspectives of network throughput, scalability,
and the performance of FAR.

6.1. Network throughput

To support cloud services, more and more internal band-
width is required in today’s data centers, and the best situ-
ation is to have no bandwidth bottleneck or traffic blocking
anywhere in a data center. Similar to the Fat-tree architec-
ture, MatrixDCN can eliminate bandwidth bottlenecks and
can achieve an approximate non-blocking network. In this
section, we take 2D MatrixDCN as an example to analysis
MatrixDCN’s performance on network throughput.

Obviously, traffic blocking occurs only on row links and
column links in a 2D MatrixDCN network. If a 2D network
is configured as RB D CB D AB, the bisection bandwidth
is equal to the access bandwidth�the number of servers=2;
thus, it is possible to eliminate a traffic blocking in the
network through appropriate traffic arrangements. In fact,
such MatrixDCN network is an approximate non-blocking
network in which only a small amount of traffic can be
blocked with a low probability. Next, we calculate the
blocking probability and blocked volume of traffic in a
MatrixDCN network. Because MatrixDCN is asymmetri-
cal structure, the traffic distribution on row links is the

Wirel. Commun. Mob. Comput. 2016; 16:942–959 © 2015 John Wiley & Sons, Ltd. 951
DOI: 10.1002/wcm



MatrixDCN: a high performance architecture for cloud DCNs Y. Sun et al.

Figure 7. Deployment of a MatrixDCN network.

same as on column links. Here, we calculate only the traf-
fic in column links. In addition, links are bidirectional, and
also the traffic of two ways are symmetrical, so we only
calculate the traffic of one way over column links.

We suppose that the scale of a MatrixDCN network is m
rows�m columns, where each AS connects with K servers
and RB D CB D AB D K for an AS. Each server con-
sumes one unit of bandwidth. To simplify calculation, we
specify that an AS first forwards a packet to CSes if the
packet passes through a different row and column. For the
column links of Aij, only when the servers in the jth col-
umn communicate with the servers in the ith row will the
traffic pass through these links from CSes to Aij. Suppose
that traffic are uniformly distributed, so the probability that
a server communicates with the servers in the ith row is
1=m, and the number of servers that communicate with the
servers in the ith row follows a binomial distribution. We
use Sij denoting the subnet at the cross position of the ith
row and jth column. There are .m � 1/K servers in the jth
column besides the servers in the subnet Sij; as a result,
the probability that k servers of those .m � 1/K servers
communicate with the servers in the ith row is as follows:

P.X D k/ D

 
.m � 1/K

k

!�
1

m

�k �
1 �

1

m

�.m�1/K�k

(1)

If more than K servers in the jth column communicate with
the servers in the ith row, the traffic in the direction from
CSes to Aij will exceed the capacity of the row links; as
a result, the excess traffic will be blocked. The blocking
probability is as follows:

� D 1 �
KX

kD0

P.X D k/ (2)

The expected value of the blocked bandwidth is:

B D
.N�1/KX
kDKC1

.k � K/P.X D k/ (3)

If m D 48 and K D 40, then it can be calculated that
� D 39.5% and B D 2. The ratio of the maximum network
throughput, that is, aggregate throughput, to total traffic
sent by all servers is 40=42 D 95.24%. And in this case,
the total traffic is equal to the theoretical bisection band-
width. This result is well matched with the results of our
simulations.

6.2. Network scalability

MatrixDCN has a good scalability: 1) a MatrixDCN net-
work can support a large-scale DCN with tens to thousands
of servers. 2) Its scale can be easily expanded or shrunk.

952 Wirel. Commun. Mob. Comput. 2016; 16:942–959 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



Y. Sun et al. MatrixDCN: a high performance architecture for cloud DCNs

Table I. Comparison of network scales.

Network type Num of switches Num of servers

MatrixDCN 1 3840 36 864
Fat-tree 1 2880 27 648
MatrixDCN 2 2688 110 592
Fat-tree 2 1440 55 296

As shown in Table I, with 48-port switches, a 2D
MatrixDCN network (MatrixDCN 1) can support maxi-
mally 36 864 servers; and oppositely, a fat-tree network
(fat-tree 1) only supports 27 648 servers. MatrixDCN 1
supports 4/3 times more servers than fat-tree 1. If we use
the uplink ports of ASes to connect RSes and CSes, and all
the 48 downlink ports of an AS are used to connect servers,
a 2D MatrixDCN network (MatrixDCN 2) can support
110 592 servers. Correspondingly, such fat-tree network
(fat-tree 2) can only support 55 296 servers, which is half
of the number that a MatrixDCN can support.

In MatrixDCN 2, RB and CB are 10 times larger than AB,
each AS has eigjt uplink ports and 48 downlink ports; each
RS/CS has 48 ports, and each row/column deploys with
four RSes/CSes. In fat-tree 2, the bandwidth of the other
links is 10 times larger than the link between edge switches
and servers; each edge switch has four uplink ports and 48
downlink ports; each core/aggregate switch has 48 ports,
and each pod has four aggregate switches.

It is easy to expand or shrink the scale of a MatrixDCN
network. To expand a MatixDCN network, more rows or
columns can be dynamically deployed according to the real
requirement. Oppositely, to shrink a MatrixDCN network,
some rows and columns can be removed from the network.

6.3. The performance of FAR

We evaluate the performance of FAR with respect to the
number of control messages, the route calculating time
and the size of routing tables. A test MatrixDCN network
is a 2D network composed of 3840 48-port switches and
36 864 servers is used in this section.

(1) The number of control messages
FAR exchanges a few messages between routers and
only consumes a little network bandwidth. Table II
shows the required messages in the test MatrixDCN
network.

The last column of Table II presents the band-
width consumed by each type of message on a link.
From Table II, we can see that hello messages are
only exchanged among neighbor switches, so hello
messages use less than 4 kbps bandwidth on a link.
An LFA message is produced when a link fails or
recovers from failure, and a DLR message is pro-
duced only when a switch is booted up, so the
two types of messages are very few and consume
very little bandwidth. Each switch will produce a
DA message in a DA period, and the message will

pass through a link no more than one time when
the message is spread throughout the entire net-
work, so the number of DA message passed through
a link is no more than the number of switches in
a DA period. The maximum bandwidth consumed
by DA messages in a DA period is no more than
the number of switches� the size of DA message D
3840 � 48 � 8 bits � 1.47 Mbits. Because a DA
period is very long (30 min), DA messages use little
bandwidth.

It can be concluded that even in a very large data
center with 36 864 servers and 3840 switches, FAR
produces a few number of messages and uses little
bandwidth.

(2) The calculating time of routing tables
A BRT is calculated according to the states of its
neighbor routers and attached links. An NRT is
increasingly calculated according to the learned link
failures in the entire network. So FAR does not
calculate network topology and has no problem of
network convergence, which greatly reduces the cal-
culating time of routing tables. In FAR, a router can
calculate its BRT and NRT in several milliseconds.
The detection and spread time of link failures is also
very short in FAR. Detection time is up to the inter-
val of sending a hello message. In FAR, the interval
is set to 100 ms, and a link failure will be detected in
200 ms. The spread time between any pair of routers
is less than 200 ms. In conclusion, if a link fails in
a data center network, FAR can detect it, spread it
to all the routers, and calculate routing tables in no
more than 500 ms.

In OSPF, Dijkstra algorithm is used to calcu-
late the shortest path tree (SPT), and based on the
SPT, OSPF calculates a routing table. Using Dijk-
stra algorithm, it spent 21 s only to calculate the
SPT for the test MatrixDCN network in our experi-
ment running on a machine with an Intel I7 2.8 GHz
dual-core CPU (Intel Corporation, Santa Clara, CA,
USA), 8 G memory, and Windows 7 OS (Redmond,
WA, USA). Furthermore, the convergence proce-
dure of OSPF in a large-scale network requires a
much longer time than the calculating time of the
SPT. In general, OSPF may require totally several
minutes to calculate routing tables for a large-scale
network.

(3) The size of routing tables
The size of a BRT at a switch is determined by the
number of neighbor switches of the switch. In the
test network,the size of a BRT at a RS, CS, and AS
is only 48, 48, and 64, respectively.

Only ASes require NRTs. The size of an NRT is
decided by the number and locations of link fail-
ures. In the 48�48 MatrixDCN network previously,
we generate 100, 200 to 1000 link failures randomly
and take 10 ASes as a sample to measure the aver-
age size of NRTs, which are plotted in Figure 8.
Figure 8 shows that the size of an NRT has a linear

Wirel. Commun. Mob. Comput. 2016; 16:942–959 © 2015 John Wiley & Sons, Ltd. 953
DOI: 10.1002/wcm



MatrixDCN: a high performance architecture for cloud DCNs Y. Sun et al.

Table II. Required messages in a MatrixDCN network.

Message type Scope Size Rate Bandwidth

Hello Between adjacent < 48 bytes 10 messages/s <4 kbps
switches

DLR Between adjacent < 48 bytes Produce one when 48 bytes
switches a router starts

DA In the entire network < 48 bytes The number of switches (3840) 1.47 Mbits
in a DA period (30 min)

LFA In the entire network < 48 bytes Produce one when a link 48 bytes
fails or recovers

Figure 8. The size of an NRT is related to the number of link
failures.

relationship with the number of link failures. When
the network has up to 1000 link failures, an NRT
only has about 20 entries.

If we run OSPF routing protocol in the test
MatrixDCN network, each switch requires 76 032
route entries, because OSPF creates a particular
route entry for each network segment in each
switch, and the MatrixDCN network consists of
76 032 network segments.

For the test MatrixDCN network, the routing
table sizes of FAR and OSPF are listed in Table III.
Table III shows the size of routing tables in FAR
is much smaller than that in conventional routing
methods such as OSPF.

7. VERIFICATION BY SIMULATION

In this part, we evaluate network performance of
MatrixDCN by comparing with fat-tree through OPNET
simulations. We measure two key performance parameters,
network aggregate throughput, and average end-to-end
(ETE) communication delay. Aggregate throughput is the
sum of the data rates that are delivered to all servers in a
network. It indicates a network’s capacity. ETE delay is the
time that a packet go through a network from source node
to destination node. ETE delay is an important factor of
network performance.

OPNET modeler 14.5 is used in the simulation. FAR
switches are developed based on the standard layer 3
Ethernet switch model in the OPNET modeler. FAR is

implemented as a process model in the standard layer 3
Ethernet switch model, and the process model is placed
over the ip_encap process model, similar to other routing
protocols such as OSPF and ISIS. We modified the stan-
dard IP routing model slightly and applied the destination-
based multi-path load balancing to our routing algorithm.

Figure 9 is the state transition diagram of the FAR pro-
cess. At the entrance of neighbor detection (ND) state,
ND_timeout, and self_interrupt_hello, self-interruptions
are created. At the exit of ND state, the DA and DLR mes-
sages are broadcasted to its neighbor switches. When there
is an ND_timeout interruption, the FAR process goes into
the listen state. The far_schedule procedure is responsi-
ble for detecting link and node failures and for generating
hello, DA, and LFA messages periodically.

We build three scenarios for both the MatrixDCN and
fat-tree architectures with different sizes in our simu-
lation. In scenario 1, we build a MatrixDCN and a
Fat-tree network with 100 Mbps switches. Each network
has 128 servers. The MatrixDCN network is 4�8 in which
each AS links four servers, and each row/column deploys
four RSes/CSes. The fat-tree network, which is built with
eight-port switches, has 16 core switches and eight pods,
and each pod has four aggregation switches, four edge
switches, and 16 servers. In scenario 2, we upgrade link
bandwidth from 100 Mbps to 400 Mbps except for the
access links in both the MatrixDCN and fat-tree network.
Accordingly, in the MatrixDCN network, each row/column
requires only one RS/CS, and in the fat-tree network, a total
of four core switches and only one aggregate switch in each
pod are required. In scenario 3, we increase the sizes of
the two networks and further upgrade their link bandwidth
to 1000 Mbps, except for access links. The bandwidth of
an access link still stays at 100 Mbps. The MatrixDCN
network in scenario 3 becomes an 8 � 8 network with
640 servers, in which each AS links 10 servers, and each
row/column deploys one RS/CS. The fat-tree network in
this scenario has 10 core switches and six pods, and every
pod has one aggregation switch, 10 edge switches, and
100 servers. A total of 600 servers appear in this fat-tree
network.

954 Wirel. Commun. Mob. Comput. 2016; 16:942–959 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



Y. Sun et al. MatrixDCN: a high performance architecture for cloud DCNs

Table III. The size of routing tables in FAR.

Routing table Row switch (RS) Column switch (CS) Access switch (AS)

Basic routing table (BRT) 48 48 64
Negative routing table (NRT) 0 0 < 20�

Open shortest path first (OSPF) 76 032 76 032 76 032

� The size of an NRT is decided by the number of link failures in a network, as shown in Figure 8.

Figure 9. State transition of the FAR process.

Figure 10. The MatrixDCN simulation network.

Wirel. Commun. Mob. Comput. 2016; 16:942–959 © 2015 John Wiley & Sons, Ltd. 955
DOI: 10.1002/wcm



MatrixDCN: a high performance architecture for cloud DCNs Y. Sun et al.

(a) The main view

(b) The view of Pod 1

Figure 11. The fat-tree simulation network.

Figure 10 is the MatrixDCN network in scenario 1. To
make its topology clearer, we put all the RSes in a row,
all the CSes in a column, and all the servers in a subnet
into a logical subnet, respectively. Figure 11(a) is the fat-
tree network in scenario 1. We put each pod of the fat-tree
network into a logical subnet, as shown in Figure 11(b).
In those figures, red lines represent the links between net-
work nodes, and blue lines represent the traffic between
servers. Here, we do not display the simulation networks
in scenarios 2 and 3 because they are similar to scenario 1.

In our simulation, we pair off all of the servers randomly.
Two servers in one pair send packets to each other with a
constant speed in simulations. At first, we measure network
aggregate throughput. The servers were set to send packets
with a rate of 100 Mbps in a period of simulation. Scenar-
ios 1, 2, and 3 ran three times for over 30 min each time.
We measure the average traffic that is received on each
server and accumulate them together as the network aggre-
gate throughput. Table IV shows the aggregate throughput
as the percentage of the maximum theoretical throughput,
that is, the ideal bisection bandwidth.

Next, we measured network ETE communication delay.
The servers were set to send packets with a rate from
100 Mbps down to 30 Mbps. Scenarios 1 and 3 ran 5 min

Table IV. Aggregate throughput.

Network Scenario 1 Scenario 2 Scenario 3

MatrixDCN 64.7% 92.3% 96.8%
Fat-tree 62.1% 93.5% 97.6%

Figure 12. ETE delay in fat-tree and MatrixDCN.

under different traffic. We measure the average ETE delays
and plot the results in the Figure 12.

Table IV indicates that the network throughput of
MatrixDCN is almost the same as that of fat-tree, and the
result of the simulation is close to the theoretical value
analyzed in the previous section. Figure 12 shows that the

956 Wirel. Commun. Mob. Comput. 2016; 16:942–959 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



Y. Sun et al. MatrixDCN: a high performance architecture for cloud DCNs

ETE communication delay in MatrixDCN is close to fat-
tree too. The network performance in scenario 1 is worse
than in scenario 3 on both the throughput and ETE delay,
because load imbalance occurred in scenario 1, which
caused too much traffic, was forwarded to the same link,
and resulted in network congestion. In scenarios 2 and
3, a group of low-speed links are replaced by one high-
speed link, so the problem of network load imbalance is
greatly relieved.

8. CONCLUSIONS

In this paper, we present a novel network architecture
MatrixDCN for large-scale cloud data centers. Our sim-
ulation shows that its performance is close to fat-tree.
Additionally, MatrixDCN has some salient advantages:
(1) its structure is simple and clear, which is helpful for
reducing the cost of network management and mainte-
nance, and (2) it supports extra-large-scale networks. A 2D
MatrixDCN network can accommodate 4/3 to two times
more servers than fat-tree; (3) it has good scalability. It
is easy to expand or to shrink the scale of a MatrixDCN
network; and (4) its routing algorithm FAR is simple and
effective with only dozens of route entries.

Moreover, a new concept of the NRT is imported in FAR.
FAR computes the paths to be avoided according to the
failed links and removes these paths from possible routing
paths, which is simple and efficient in a network with a
regular topology. We think this method can also be applied
to other network architectures such as fat-tree, and it would
improve their routing efficiency.

In future work, a flow scheduler will be introduced to
MatrixDCN because our simulations show that load imbal-
ances seriously affect the performance of MatrixDCN.
We will also support virtual machine (VM) migration in
the entire network because it is a very important feature
for DCN.

ACKNOWLEDGEMENTS

The authors would like to extend their sincere appreciation
to the Deanship of Scientific Research at King Saud Uni-
versity for its funding of this research through the Research
Group Project no. RGP-VPP-281, ZTE-BJTU Collabora-
tive Research Program (No. K11L00190), and the Chinese
Fundamental Research Funds for the Central Universities
(No. K12JB00060).

REFERENCES

1. Dinh HT, Lee C, Niyato D, Wang P. A survey of
mobile cloud computing: architecture, applications,
and approaches. Wireless communications and mobile
computing 2013; 13(18): 1587–1611.

2. Lin K, Chen M. Energy equilibrium based on corona
structure for wireless sensor networks. Wireless com-

munications and mobile computing 2012; 12 (13):
1203–1214.

3. Chen M, Leung V, Mao S, Kwon T. A survey of
mobile cloud computing: architecture, applications,
and approaches. Wireless communications and mobile
computing 2009; 9(3): 405–416.

4. Greenberg A, Hamilton JR, Jain N, Kandula S,
Kim C, Lahiri P, Maltz DA, Patel P, Sengupta S. Vl2:
a scalable and flexible data center network. In ACM
SIGCOMM’09, ACM, Barcelona, Spain, 2009; 51–62.

5. Greenberg A, Hamilton J, Maltz DA, Patel P. The cost
of a cloud: research problems in data center networks.
In ACM SIGCOMM’08, ACM, Seattle, WA, USA, Aug
2008; 68–73.

6. Chen M, Wen Y, Jin H, Leung V. Enabling technolo-
gies for future data center networking: a primer. IEEE
Network July 2013; 27(4): 8–15.

7. Al-Fares M, Loukissas A, Vahdat A. A scalable,
commodity data center network architecture. In ACM
SIGCOMM’08, ACM, Seattle, WA, USA, Aug 2008;
63–74.

8. Guo C, Guohan L, Li D, Haitao W, Zhang X, Shi Y,
Tian C, Zhang Y, Songwu L. Bcube: a high perfor-
mance, server-centric network architecture for modular
data centers. In ACM SIGCOMM’09, ACM, Barcelona,
Spain, Aug 2009; 63–74.

9. Moy JT. OSPF: anatomy of an Internet routing proto-
col. Addison-Wesley Professional 1998.

10. Li D, Mingwei X, Zhao H, Xiaoming F. Building mega
data center from heterogeneous containers. In 19th
IEEE International Conference on Network Proto-
cols (ICNP), IEEE, Vancouver, BC Canada, Oct 2011;
256–265.

11. Guo C, Haitao W, Tan K, Shi L, Zhang Y, Songwu L.
Dcell: a scalable and fault-tolerant network structure
for data centers. ACM SIGCOMM Computer Commu-
nication Review, ACM Aug 2008; 38(4): 75–86.

12. Li D, Guo C, Haitao W, Tan K, Zhang Y, Ficonn SL.
Using backup port for server interconnection in data
centers. In IEEE INFOCOM’09, IEEE, Rio de Janeiro,
Brazil, 2009; 2276–2285.

13. Liao Y, Yin D, Gao L. Dpillar: scalable dual-port
server interconnection for data center networks. In 19th
International Conference on Computer Communica-
tions and Networks (ICCCN), IEEE, Zurich, Switzer-
land, 2010; 1–6.

14. Guo D, Chen T, Li D, Liu Y, Liu X, Chen G.
BCN: expansible network structures for data centers
using hierarchical compound graphs. In IEEE INFO-
COM’11, IEEE, Shanghai, China, 2011; 61–65.

15. Gyarmati L, Anh Trinh T. Scafida: a scale-free
network inspired data center architecture. In ACM
SIGCOMM’10, ACM, New Delhi, India, Aug 2010;
4–12.

Wirel. Commun. Mob. Comput. 2016; 16:942–959 © 2015 John Wiley & Sons, Ltd. 957
DOI: 10.1002/wcm



MatrixDCN: a high performance architecture for cloud DCNs Y. Sun et al.

16. Curtis AR, Carpenter T, Elsheikh M, López-Ortiz A,
Keshav S. Rewire: an optimization-based framework
for unstructured data center network design. In IEEE
INFOCOM’12, IEEE, Orlando, Florida USA, 2012;
1116–1124.

17. Farrington N, Porter G, Radhakrishnan S, Bazzaz HH,
Subramanya V, Fainman Y, Papen G, Vahdat A.
Helios: a hybrid electrical/optical switch archi-
tecture for modular data centers. In ACM SIG-
COMM’11, ACM, Toronto, ON, Canada, Aug 2011;
339–350.

18. Wang G, Andersen DG, Kaminsky M, Papagiannaki K,
Ng TS, Kozuch M, Ryan M. c-through: part-time optics
in data centers. ACM SIGCOMM Computer Communi-
cation Review, ACM Aug 2010; 41(4): 327–338.

19. Halperin D, Kandula S, Padhye J, Bahl P, Wetherall D.
Augmenting data center networks with multi-gigabit
wireless links. In ACM SIGCOMM’11, ACM, Toronto,
ON, Canada, Aug 2011; 38–49.

20. Zhou X, Zhang Z, Zhu Y, Li Y, Kumar S, Vahdat A,
Zhao BY, Zheng H. Mirror mirror on the ceiling: flex-
ible wireless links for data centers. ACM SIGCOMM
Computer Communication Review 2012; 42 (4):
443–454.

21. Touch J, Perlman R. Transparent interconnection of
lots of links (trill): problem and applicability state-
ment[online], 2009. Available online from: http://tools.
ietf.org/html/rfc5556 [accessed on July 1, 2014].

22. Cisco. Fabricpath [online]. Available online from:
http://www.cisco.com/en/US/netsol/ns1151/index.html
[accessed on July 1, 2014].

23. Kim C, Caesar M, Rexford J. Floodless in seattle: a
scalable ethernet architecture for large enterprises. In
ACM SIGCOMM’08, ACM, Seattle, WA, USA, Aug
2008; 3–14.

24. Mudigonda J, Yalagandula P, Al-Fares M, Mogul JC.
Spain: cots data-center Ethernet for multipathing over
arbitrary topologies. In Proceedings of the 7th USENIX
conference on Networked systems design and imple-
mentation, USENIX Association, San Jose, CA, USA,
Mar 2010; 18–18.

25. Mudigonda J, Yalagandula P, Mogul J, Stiekes B,
Pouffary Y. NetLord: a scalable multi-tenant network
architecture for virtualized data centers. In ACM SIG-
COMM’11, ACM, Toronto, ON, Canada, Aug 2011;
62–73.

26. Katz D, Ward D. Bidirectional forwarding detec-
tion(bfd) for ipv4 and ipv6 (single hop))[online],
2010. Available online from: http://tools.ietf.org/html/
rfc5881 [accessed on July 1, 2014].

27. Sem-Jacobsen FO, Skeie T, Lysne O, Duato J.
Dynamic fault tolerance in fat-trees. IEEE Transac-
tions on Computers April 2011; 60(4): 508–525.

28. Mysore RN, Pamboris A, Farrington N, Huang N, Miri

P, Radhakrishnan S, Subramanya V, Vahdat A. Port-

land: a scalable fault-tolerant layer 2 data center net-

work fabric. In ACM SIGCOMM’09, ACM, Barcelona,

Spain, Aug 2009; 39–50.

29. Walraed-Sullivan M, Mysore RN, Tewari M, Zhang Y,

Marzullo K, Vahdat A. Alias: scalable, decentralized

label assignment for data centers. In Proceedings of

the 2nd ACM Symposium on Cloud Computing, ACM,

Cascais, Portugal, 2011.

AUTHORS’ BIOGRAPHIES

Yantao Sun is a lecturer in the School
of Computer and Information Tech-
nology, Beijing Jiaotong University,
Beijing, China. He received his PhD
degree from the Institute of Software
Chinese Academy of Sciences in 2006.
His research interests include cloud
computing, data center network, wire-

less sensor network, the Internet of Things, multimedia
communication, and network management. He published
more than 20 papers on international conferences and
journals and applied tens of invention patents.

Min Chen (minchen@ieee.org) is
a professor in School of Computer
Science and Technology at Huazhong
University of Science and Tech-
nology. He is the Chair of IEEE
Computer Society (CS) Special Tech-
nical Communities on Big Data. He
was an assistant professor in School

of Computer Science and Engineering at Seoul National
University (SNU) from September 2009 to February 2012.
He was R&D director at Confederal Network Inc. from
2008 to 2009. He worked as a post-doctoral fellow in
Department of Electrical and Computer Engineering at
University of British Columbia (UBC) for three years.
Before joining UBC, he was a post-doctoral fellow at
SNU for one and half years. He received the Best Paper
Award from IEEE ICC 2012, and Best Paper Runner-
up Award from QShine 2008. He has more than 180
paper publications, including 85 SCI papers. He serves
as editor or associate editor for Information Sciences,
Wireless Communications and Mobile Computing, IET
Communications, IET Networks, Wiley I. J. of Secu-
rity and Communication Networks, Journal of Internet
Technology, KSII Trans. Internet and Information Sys-
tems, International Journal of Sensor Networks. He is
managing editor for IJAACS and IJART. He is a guest
editor for IEEE Network, IEEE Wireless Communications
Magazine, and so on. He is the co-chair of IEEE ICC 2012-
Communications Theory Symposium, and the co-chair of

958 Wirel. Commun. Mob. Comput. 2016; 16:942–959 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

http://tools.ietf.org/html/rfc5556
http://tools.ietf.org/html/rfc5556
http://tools.ietf.org/html/rfc5881
http://tools.ietf.org/html/rfc5881
minchen@ieee.org


Y. Sun et al. MatrixDCN: a high performance architecture for cloud DCNs

IEEE ICC 2013-Wireless Networks Symposium. He is
general co-chair for IEEE CIT-2012 and Mobimedia 2015.
He is the general vice chair for Tridentcom 2014. He is the
keynote speaker for CyberC 2012 and Mobiquitous 2012.
He is a TPC member for IEEE INFOCOM 2013 and INFO-
COM 2014. His research focuses on Internet of Things, Big
Data, machine to machine communications, Body Area
Networks, E-healthcare, mobile cloud computing, ad hoc
cloudlet, Cloud-Assisted Mobile Computing, ubiquitous
network and services, and multimedia transmission over
wireless network, and so on.

Limei Peng (auroraplm@ajou.ac.kr) is
an assistant professor with the depart-
ment of Industrial Engineering, Ajou
University, South Korea. Before she
joined Ajou University, she worked as
an associate professor in School of
Electronic and Information Engineer-
ing, Soochow University, China, for

more than 2 years. Her research interests fall in Optical
communications, Cloud computing, Datacenter networks,
and Software defined networks.

Mohammad Mehedi Hassan an assis-
tant professor of the Information Sys-
tems Department at the College of
Computer and Information Sciences,
King Saud University, Riyadh, Saudi
Arabia. He received his PhD degree
in Computer Engineering from Kyung
Hee University, South Korea in Febru-

ary 2011. He has authored and co-authored more than
70 publications including refereed IEEE/ACM/Springer
journals, conference papers, books, and book chapters.
His research interests include cloud collaboration, media
cloud, sensor-cloud, mobile Cloud, IPTV, and wirless sen-
sor network.

Abdulhameed Alelaiwi is an assis-
tant professor at Department of Soft-
ware Engineering, King Saud Univer-
sity, Riyadh, Saudi Arabia.

Wirel. Commun. Mob. Comput. 2016; 16:942–959 © 2015 John Wiley & Sons, Ltd. 959
DOI: 10.1002/wcm

auroraplm@ajou.ac.kr

	MatrixDCN: a high performance network architecture for large-scale cloud data centers
	ABSTRACT
	INTRODUCTION
	RELATED WORK
	MATRIXDCN ARCHITECTURE
	Multi-dimension network
	Addressing in MatrixDCN

	FAR ROUTING
	The framework of FAR
	Limited state machine of FAR
	Learn link states
	Basic routing table
	Negative routing table
	Lookup routing tables

	DEPLOYMENT
	NETWORK PERFORMANCE ANALYSIS
	Network throughput
	Network scalability
	The performance of FAR

	VERIFICATION BY SIMULATION
	Conclusions
	Acknowledgements
	REFERENCES


