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Abstract—New-generation mobile devices will inevitably be em-
ployed within the realm of ubiquitous sensing. In particular,
smartphones have been increasingly used for human activity
recognition (HAR)-based studies. It is believed that recognizing
human-centric activity patterns could accurately enough give a
better understanding of human behaviors. Further, such an ability
could have a chance to assist individuals to enhance the quality of
their lives. However, the integration and realization of HAR-based
mobile services stand as a significant challenge on resource-
constrained mobile-embedded platforms. In this manner, this
paper proposes a novel discrete-time inhomogeneous hidden
semi-Markov model (DT-IHS-MM)-based generic framework to
address a better realization of HAR-based mobile context aware-
ness. In addition, we utilize power-efficient sensor management
strategies by providing three intuitive methods and constrained
Markov decision process (CMDP), as well as partially observ-
able Markov decision process (POMDP)-based optimal methods.
Moreover, a feedback control mechanism is integrated to balance
the tradeoff between accuracy in context inference and power con-
sumption. In conclusion, the proposed sensor management meth-
ods achieve a 40% overall enhancement in the power consumption
caused by the physical sensor with respect to the overall 85–90%
accuracy ratio due to the provided adaptive context inference
framework.

Index Terms—Context-aware framework, human activity
recognition (HAR), optimal sensing, power efficiency.

I. INTRODUCTION

THE ever-increasing technical advances in embedded sys-
tems, together with the proliferation of growing develop-

ment and deployment in small-size sensor technologies, have
enabled smartphones to be repurposed to recognize daily oc-
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curring human-based actions, activities, and interactions, which
mobile device users encounter with the surrounding environ-
ment. Accurately recognizing human-related event patterns,
which are called user states, can give a better understanding
of human behaviors. Such recognition can also be used to assist
individuals to enhance the quality of their lives. Therefore, the
inference of a variety of human activities in a computationally
pervasive way within a very diverse context has drawn much
interest in the research area of ubiquitous sensing.

In the real world, being aware of context and communicating
is a key part of human interaction. A context can be defined
as characterization of a specific entity situation such as user
profile, user surrounding, user social interaction, or user activity
[1]–[3]. Applying context awareness into mobile devices en-
ables to have a collection of autonomous, ambient intelligent,
and self-operated network nodes (e.g., independently acting
smartphones), which are well aware of surrounding context,
circumstances, and environments. The evolution of ubiquitous
sensing on resource-constrained mobile devices have empow-
ered the creation of context-aware middleware [4], [5]. It
emerges as a promising solution for the dynamic integration
of highly complex and rich interactions among the virtual
world and the physical world. With these capabilities, the new
emerging network architecture would enhance data credibility,
quality, privacy, and sharing ability by encouraging participa-
tion at personal, social, and urban scales, and would lead to the
discovery of the knowledge about human lives and behaviors,
and environment interactions/social connections by leveraging
the deployment capacity of smart things (e.g., smartphones and
tablets) to collect and analyze the digital traces left by users.

However, the heavy use of the built-in smartphone sen-
sors would bring new challenges particularly in resource-
constrained hardware platforms. Continuously capturing user
context through sensory data acquisitions and inferring desir-
able hidden information from the context would put a heavy
workload on the smartphone processor and sensors. Thereby,
these operations cause more power consumption than the device
itself does during a regular run. Eventually, smartphone battery
would deplete rapidly.

To address power efficiency in context awareness, the best
energy saving algorithm would be the one that infuses into the
low-level sensory operations by manipulating the frequentness
of sensory sampling intervals. In particular, an adaptive sensor
management mechanism that dynamically assigns duty cycles
(DCs) and sampling periods in a context-aware manner would
reduce power consumption significantly. However, intervening
sensory operations to achieve power efficiency jeopardizes the
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accuracy, i.e., quality of service, provided by context-aware
services. Therefore, it creates a tradeoff between power con-
sumption and accuracy provided by these services.

In this paper, we propose a novel framework that allows to
run a HAR-based smartphone application while achieving a
fine balance in the defined tradeoff. The framework consists of
a context inference module, including an observation analysis
block to acquire and infer the desired contexts through the
smartphone accelerometer, a statistical machine to represent
user activities, and a sensor management system to prolong the
smartphone battery lifetime. Our objective is to improve the
power efficiency of smartphones by dynamically adapting sen-
sor sampling rates and DCs while supporting accurate recogni-
tion in user activities. More importantly, this research creates an
effective hidden Markov model (HMM)-based framework that
provides optimal power saving methods at the low-level sensory
operations to guide the development of future context-aware
applications. The following are a few distinctive key novelties
exposed by this paper.

• User profiles are considered time-variant (inhomogeneity)
in a provided statistical machine. Therefore, the adaptabil-
ity problem is defined for time-varying user profiles, and
a relevant solution is given by introduction of the entropy
production rate. The entropy production rate is also used
for the accuracy notifier in a context inference problem.

• The analytical modeling of the accelerometer sensor is
provided and integrated into the sensor management sys-
tem. The system aims at utilizing a mixture pair of duty
cycling and adaptive sampling regulated by three intuitive
and two suboptimal sampling policies to prolong mobile
device battery lifetime.

• Missing observations occurred due to the power saving
strategies that are estimated under the regulation of inho-
mogeneous semi-Markovian process.

• A feedback control mechanism is integrated between con-
text inference module and sensor management system to
ensure that a fine balance is obtained for the tradeoff.

• A smartphone application is implemented to show the
effectiveness of proposed entropy production rate analy-
sis on accuracy notification and the extension of battery
lifetime under proposed sensor management system.

The remainder of this paper is organized as follows.
Section II gives a relevant prior research. Section III provides
the purpose and intention of the proposed framework design.
Section IV explains the context inference module consisting of
analysis of sensory data and the creation of a statistical ma-
chine to represent true user activities and behaviors. Section V
includes the analytical model of sensor utilization, and power
saving solutions to balance the tradeoff. Section VI is reserved
for performance analysis. Finally, Section VII shows the con-
clusion and future work. In addition, the summary of impor-
tant notations used throughout the paper is listed in Table I.

II. RELATED WORK

Pervasive mobile computing, which captures and evaluates
sensory contextual information to infer user relevant actions/
activities/behaviors, has been becoming a well-established re-

TABLE I
SUMMARY OF IMPORTANT SYMBOLS

search domain, particularly within the realm of human activity
recognition (HAR) and location-based services. Most studies
rely on recognition of user activities (particularly posture detec-
tion) and definition of common user behaviors by proposing and
implementing numerous context inferring systems. In addition,
researchers have been aware of the need for computational
power while trying to infer sensory context accurately enough.
However, most works provide some partial answers to the trade-
off between context accuracy and battery power consumption.
It is hard to say that power saving considerations have been
significantly taken at the low-level physical sensory operations.
In particular, there is no generic framework that intends to apply
adaptively changing dynamic sensor management strategies,
which employs varying DCs and sampling periods during a
sensory operation similar to what this paper intends to propose.

From the standpoint of a creation of framework design in
context-aware applications, it would be notable to mention the
following studies. “EEMSS” in [6], “Jigsaw” in [7], “Sensay”
in [8] and “SeeMon” in [9] use hierarchical sensor manage-
ment strategy by powering a minimum number of sensors and
applying fixed sensor DCs so that the proposed framework
could recognize user states through smartphone sensors while
improving device battery lifetime. Unfortunately, sensors have
fixed DCs, and they are not adjustable to respond differently
to variant user behaviors. In addition, energy consumption is
reduced by shutting down unnecessary sensors at any particular
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time. On the other hand, classification of sensory data is based
on predefined test classification algorithms. Apart from these
studies, many other works have emphasized to use determin-
istic sampling period schemes [10] and to maximize power
efficiency by solely applying less complexity in computations
or by changing transferring methods of inferred contextual
data packets [9]. The other popular method is to fuse multiple
sensory information to decide future employment of a specific
sensor, particularly in localization applications [11], [12].

This paper differs from other studies in the following ways.
First, this paper considers the physical world as inhomoge-
neous. Therefore, the inhomogeneity is characterized by time-
variant system parameters. Second, the adaptability challenge
in response to variant and rapid user activities is integrated
as well using the convergence of entropy rate in conjunction
with the inhomogeneity. Accordingly, the entropy rate is used to
make an assumption on accurate working of system parameters
regulated by an ongoing stochastic process. Third, power saving
considerations are taken at the low-level sensory operations.
Fourth, and most importantly, a machine learning structure
regulates sensor management by estimating the trend of user
preference, and opportunistically finding out stable moments in
user activity. Thereby, sensor management could apply optimal
sensing policies and change sensor sampling settings to respond
the defined tradeoffs in context-aware application services. Fi-
nally, missing contextual inferences are estimated while energy
saving strategies are being applied.

III. PROPOSED FRAMEWORK

Context-aware sensing systems have been put forward to pro-
vide a required model for recognition of daily occurring human
activities via observations acquired by various sensors built in
mobile devices. These activities are inferred as outcomes of
a wide range of sensor applications utilized in such areas of
environmental surveillance, assisting technologies for medical
diagnosis/treatments, and creation of smart spaces for indi-
vidual behavior model. Key challenges that are faced in this
concept is to infer relevant activity in such a system that
takes raw sensor readings initially and processes them until
obtaining a semantic outcome under some constrictions. These
constrictions mostly stem from difficulty of shaping exact
topological structure and from modeling uncertainties in the
observed data due to saving energy wasted while physical
sensor operations and processing of data are being undergone.
Finally, there is no common framework system that covers all
types of application settings, provides an adaptation toward
changing context, and acquires a collection of asynchronous
heterogeneous context to create different abstract entities. None
of current frameworks succeeds to have a full transparency,
which eliminates a direct involvement of applications into
context modeling process, by imposing less computational
workload on resource-limited mobile devices. In this direction,
gathering diverse and asynchronous information and presenting
it to the application would be the future work in context-
aware framework research, which this paper intends to en-
lighten. By this means, this paper could help the exciting
vision of “Internet-of-Things” [13] while creating a knowledge

network capable of making autonomous logical decision to
actuate environmental objects, as well as to assist individ-
uals, particularly in a resource-constrained smart device. In
addition, this paper could give a solution to effectively man-
age fusion of data gathered from multiple sensor applications.

To this end, this paper proposes an inhomogeneous (time-
variant) HMM-based framework to represent HAR-based user
states by defining them as an outcome of either recognition or
estimation model. A statistical tool-based classification, mostly
using HMMs [14], [15] or using autoregressive (AR) [16]
models, is one of the foremost methods to infer context obtained
via wearable or built-in smart device sensors in HAR-based ap-
plications. However, these studies mostly allow predefined and
user-manipulated system parameter settings, such as arbitrary
formation of context transition matrix in HMMs or building
filtering coefficients in AR models, which is not suitable for
online processing due to increasing computational workload
while enlarging the data size. Therefore, a statistical model
is added into our approach to track time-variant user activity
profiles to predict the best likely user state that fits into instant
user behavior. The inhomogeneity is characterized by time-
variant system parameters, and the user profile adaptability
challenge is modeled using the convergence of entropy rate.
Accordingly, an implemented smartphone application is pro-
vided to demonstrate how entropy rate converges in response
to distinctive time-variant user profiles under different sensory
sampling operations. The proposed framework is designed to
be based on a statistical machine to obtain a better realization
in context awareness to create adaptability to time-variant user
preferences and behaviors, estimate missing context inferences
in presence of idle sensory operations, and preserve the func-
tionality against aperiodically received sensory observations.

Most importantly, the key of this study is that a machine
learning structure regulates sensor management opportunisti-
cally to figure optimal sensing policies and changes sensor
sampling settings, such as varying sensory sampling and duty
cycling, to achieve power efficiency while satisfying the accu-
racy of context-aware application services.

The following two sections give further information about
two interoperated core modules that our proposed framework
has: context-inference module and sensor management system.

IV. CONTEXT INFERENCE MODULE

The proposed context inference module consists of two main
blocks as shown in Fig. 1, which are sensory data acquisi-
tion and analysis, and a statistical machine. The first block
receives raw sensory readings (i.e., extracted user contexts
through mobile-device-based sensors) as inputs. These readings
undergo a series of signal processing operations, and eventually
end up with a classification algorithm to provide desirable
inferences about user-relevant information for context-aware
applications. Note that the selection of classification algorithm
in the inference process could differ due to the interested
context obtained through a target sensor. The probabilistic
outcomes of the classification algorithms source the inputs of
the second block.

The second block chooses a discrete-time inhomogeneous
hidden semi-Markov model (DT-IHS-MM) as the desired
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Fig. 1. Operational process flow of the proposed context-aware framework: The framework consists of two main modules, which are context inference module
and sensor management system. Basically, context inference module acquires sensory data, extracts context, infers user states, and delivers recognition accuracy
statistics to sensor management system. Then, sensory operations are adjusted by sensor management system to achieve a fine balance in power consumption and
recognition accuracy.

statistical machine. HMMs have been used to infer mobile-
device-based human-centric sensory context in HAR-based
applications [17]. However, our approach intends to expand the
properties of statistical machine so as to obtain a better realiza-
tion in context awareness. First, the concept of Markov renewal
process is adopted to describe the functionalities of user behav-
ior modeling. Second, the inhomogeneity is introduced to char-
acterize time-variant user behaviors so that the module could
adapt itself to dynamically changing user behaviors. Third,
the semi-Markovian feature is added to specify aperiodically
received discrete-time observations through sensory readings.
Fourth, the estimation theory is included in case of missing
sensory inputs. Finally, the entropy rate analysis is integrated
to track the accuracy of context inferences because there is not
an absolute solution to actually calculate the accuracy of a real-
time running HAR-based context-aware application. Thereby,
the convergence of entropy rate is considered output of the
module, which will be used by the sensor management system
introduced in Section V.

The following subsections include the explanations of main
blocks in context inference module. The desirable statistical
machine is put forward first since some system parameters
declared in this block will be used during the introduction of
the subsequent sensory data acquisition and analysis block.

A. Inhomogeneous Hidden Semi-Markov Model:
A Statistical Machine

Classification algorithms produce observations (i.e., visible
states) ϑt of DT-IHS-MM. Among given observations, the one
that has the highest probability will make a most likely differen-
tiation in the selection of instant user behavior. This observation
is marked as instant observation ϑT , which also indicates the

most recent element of observation sequence ϑT
1 of DT-IHS-

MM. On the other hand, user states, sitting, standing, walking,
and running, are defined as hidden states S of DT-IHS-MM
since they are not directly observable but only reachable over
visible states. Therefore, each observation has cross probabil-
ities to point a user state. These cross probabilities build an
observation emission matrix o, which basically defines decision
probabilities to pick any user states from available observations.

In addition, the transition probabilities among user states
might not be stationary since a general user behavior changes
in time. Thus, it is expected from a user state either to transit
into another user state or to remain in the same with a different
probability. These occurrences build a time-variant user-state
transition matrix p.

1) Basic Definitions and Inhomogeneity: Let an inhomoge-
neous Markov process exist as ξ={ξ(t), t≥0} with a user-
state space of S={1, 2, . . . ,M}, and let Q(t)=qij(t), where
{i, j}∈S, and t ≥ 0 be a transition density matrix of ξ. If Q
satisfies both 0≤qij(t)≤∞ and qi(t)=−qii(t)=

∑
i�=j qij(t),

then Q is called a conservative inhomogeneous transition den-
sity matrix function on S.
qij(t) represents jump or transition rates from user state i to

user state j at time t. Whenever i = j, it means that current user
state remains unchanged or a dummy transition occurs.

Moreover, suppose that a user-state transition probabil-
ity matrix P (s, t)={pij(s, t)=Pr(S(t)=j |S(s)= i)}, where
t≥s≥0, together with Q, satisfies both forward and back-
ward Kolmogorov’s equations [18], which assume to have
limt↓s ∂pij(s, t)/∂t=qij(s), then S becomes an inhomoge-
neous Markov chain with the transition density of Q. The
chain can revisit a user state at different system times, and not
every user state needs to be visited. Hence, there is no require-
ment that user-state transition probabilities must be symmetric
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(pij �=pji) or a specific state might remain the same in succes-
sion of time (pii=0).

Furthermore, let an initial user state π(t)={πi(t)=
Pr(S(t)= i)} satisfy the Fokker-Planck equation [18]
dπ(t)/dt=π(t)Q(t).

2) Working Process: Let ξ = {ξn, n ∈ N} be redefined as
an inhomogeneous irreducible discrete Markov process with a
user-state space of S. The process evolves from S0 as an initial
user state and stays in there for a nonnegative length of time X1

until it goes into another user state S1. Then, it stays in the new
user state for X2 before entering into S2 and so on. As indicated
in [19], this process is a 2-D or bivariate stochastic process
in discrete time called positive (S −X) process: (S −X) =
((Sn, Xn), n ≥ 0) with initial of X0 = 0, where Xn is called
the successive sojourn times.
Xn is the time spent in state Sn−1 that defines interarrival

times. There is also another time variable Tn introduced for the
definition of system properties at which state transitions occur.
This random time sequence is called renewal sequence, and it
is given by Xn = Tn − Tn−1, n ≥ 1 with the initial statuses of
{X0, T0} = {0, 0}.

The Markov renewal process is now redefined over (S −
T ) = ((Sn, Tn), n ≥ 0) by

Qij(s, t) = Pr(Sn+1 = j, Tn+1 ≤ t |Sn = i, Tn = s) (1)

where Tn represents the nth renewal time at which a user-state
transition occurs.

The probability of waiting time, also called conditional dis-
tributions of sojourn times, for each user state i in the presence
of (1) and information about the successively followed user
state is given by

Fij(s, t) = Pr(Tn ≤ t|Sn−1 = i, Sn = j, Tn−1 = s)

=

{
Qij(s, t)/pij(s), pij ≥ 0
1, pij = 0.

(2)

In addition, with the help of (1) and (2), the probability of
the process leaving the user state i, which is also called sojourn
time distributions in a given user state, from time s to t is
introduced by

Hi(s, t) = Pr(Tn ≤ t |Sn−1 = i, Tn−1 = s)

=
∑
j

pij(s)Fij(s, t) =

U∑
j �=i

Qij(s, t). (3)

If F (s, t) = F (t− s), s ≤ t, then the kernel Q only depends
on t− s, which it yields to have Q(t− s) = pF (t− s) being
called an inhomogeneous semi-Markov process. The semi-
Markov process [20], [21] indicates that the sojourn time be-
longing to each state might have a random distribution di(t)

1,
which can depend on the next user state to be visited. Thereby,
this gives the probability of a user-state transition being oc-
curred at time t, i.e.,

bij(s, t) =

{
Qij(s, t) = 0, t ≤ s
Qij(s, t)−Qij(s, t− 1), t > s.

(4)

1The proposed solutions in Section V regulate sampling epoch times in
sensory operations and change the defined time distribution accordingly.

Moreover, for each waiting time, a user state is occupied.
Therefore, transition probabilities are defined with (3) and
(4) by

pij(s, t) = Pr(St = j |Ss = i) = δij (1 −Hi(s, t))

+
∑
m∈M

t∑
τ=1

bim(s, τ)pmj(τ, t) (5)

where δij represents the Kronecker symbol. The first element
on the right-hand side, where di(t) = 1 if i = j, notifies the
probability of residing in user state i at time t without any
change in context since time s, and the second element rep-
resents the probability of a user-state transition from state i in
some way to user state j, and staying in this new user state at
time t, i.e.,

αj(s, t) =

t∑
t′=s

∑
i

[
αi(s, t− t′)pij(s, t− t′)dj(t

′)

t′∏
t′′=1

oj(ϑt−t′+t′′ = z)

]
. (6)

3) User-State Representation Engine: User-state represen-
tation engine infers an instant user behavior in light of prior
knowledge of a human behavior pattern and the availability
of sensory observation at a decision time. If sensory observa-
tion exists, the applied process is called recognition method;
otherwise, an estimation method is used. In other words, the
estimation method is applied due to missing observations when
power efficiency is taken into consideration at the low-level sen-
sory operations.

Let ϑt denote an observation at time t, which is associated
with user state St, and let oi(ϑt) be the probability of observing
ϑt from given St = i. Thus, oi(ϑT

s ) =
∏T

t′=s oi(ϑt′) represents
a sequence of emitted observations from time s to t, s ≤ t. In
addition, note that since the process flows in a discrete time and
follows the first-order Markovian feature, a current user state St

depends solely on the most recent user state St−1.
The inference of a hidden user state j at time t, given the last

known hidden user state i at time s, s ≤ t, is presented by

Pr (St = j |Ss = i, ϑτ
s ) (7)

where τ = t− s. Equation (7) is termed as predicted P , filtered
F , and smoothed S probabilities of St, depending on observa-
tion sequence of ϑt−1

s , ϑT
s , or ϑT

s , respectively where T > t.
The recognition method uses filtered probabilities of St

where it is derived from (7) as in Fj(s, t) = Pr(St = j |Ss =
i, ϑT

s ) in the presence of sufficient number of available obser-
vations. The probability of an instant user-state recognition is
found by the forward algorithm [17], which is proposed to find
the most likely one-step-ahead user state in a hidden chain. The
forward algorithm relies on updating a probability weight α
inductively, which decides the probability of current occurrence
of a user state St generated from the one-step-previous occur-
rence St−1. However, this method works well for traditional
HMMs and not for Semi-Markovian featured models due to
the random sojourn time distribution between two consecutive
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user states in the hidden chain. In this manner, an extended
forward algorithm has been proposed in [22] and [23] by (6)
with the condition of αi(s, t) = πi if t ≤ 0.

Since the recognition process of user states evolves in real
time, the forward algorithm assigns a proper user state to
specify current user activity in case where a new observation
is made. On the other hand, to make sure that user-state
recognitions are made true, the backward algorithm, whose
corresponding weight is denoted by β, is employed [17]. By this
algorithm, the accuracy of previous user-state recognitions is
validated, i.e., smoothing. However, applying this algorithm
seems redundant as it consumes additional computational
power on the mobile device batteries. The context-aware appli-
cations run in real time, thereby there is no value of discovering
what happened in the past again. Hence, the backward compo-
nent can be neglected, and the filtered probability becomes

Fj(s, t) = αj(s, t)βj(s, t
′) = αj(s, t), t = t′ = T. (8)

Note that computational complexity while calculating system
parameters causes a crucial underflow problem. When time

goes by during evolution of ξ, αi(0, t)
t⇒ 0 starts to head to

zero at a exponential rate since pij includes elements being
lower than 1. Therefore, Fj(s, t) needs to be scaled [17] by
a factor of

∏t
t′=s

∑
j Fj(s, t

′).
In addition to using the filtered probabilities to recognize user

states, the predicted probabilities are used to estimate user state
in case of no observation received. When power saving methods
are taken into consideration as studied in Section IV-B, there
will be some time intervals during sensory operations in which
no sensor readings are obtained. As a result, the framework
cannot receive a relevant observation. In that case, the inference
of instant user state is based on the estimation method and not
on the recognition method.

The predicted probabilities are found by

Pj(s, t) = Pr
(
St = j |Ss = i, ϑt−1

1 , � ϑt

)
= Pr

(
St = j, ϑt = z |Ss = i, ϑt−1

1

)
=
∑
j

Fi(s, t− 1)pij(s, t− 1). (9)

Alternatively, (9) can be found by assigning the most likely vi-
sionary observation instead of accepting that there is a missing
observation, i.e.,

Pj,z(s, t) =
∑
j

Fi(s, t− 1)pij(s, t− 1)oj(ϑt = z). (10)

Then, the most likely observation is selected according to as-
signing each possible observation as a final node to observation
sequence while calculating (10) by

ϑ̂t = argmax
z

∑
j

Pj,z(s, t). (11)

Finally, the instant user-state estimation is found using (10)
together with (11) by

Ŝt = argmax
1≤j≤M

[Pj,z(s, t)] . (12)

Then, instant user-state recognition is specified using (8) in case
where observations are available by

St = argmax
1≤j≤M

[Fj(s, t)] . (13)

4) Time-Variant User-State Transition Matrix: The most
important feature of context-aware applications is being capa-
ble of adapting themselves to distinctive user behaviors. User-
relevant context differs in time and the corresponding user state
also does. For instance, one user might remain the same user
state for a long time, whereas others might be more active by
changing their user states frequently. Therefore, it cannot be
expected from user-state transition matrix to remain stationary
under such conditions.

• Default Settings: User-state transitions can be represented
as simple random walk on a graph [24]. On this graph,
vertex υ represents a user state, and an edge represents a
user-state transition. Thus, ξ always starts evolving by a
default transition matrix, which is

pdefaultij =
1

d(υi)
, υi ∼ υj (14)

where d(υi) is the number of vertices υj adjacent to υi.
For example, if d(υi) is 0, pdefaultii = 1, i.e.,

pij(s, τ0, τ)
update
= δij (1 −H∗

i (s, τ0, τ))

+
∑
m∈M

τ∑
v=τ0

b∗im(s, τ0, v)pmj(s+ v, τ − v). (15)

• Update: A random variable N(t) > n− 1 ↔ Tn ≤ t is
represented as the total number of jumps or transitions
of the (S − T ) process during (s = 0, t]. Therefore, N(t)
is also called the discrete-time counting process of the
number of jumps. Jumps or transitions may include any
transition towards user state itself (i.e., virtual transitions).

By having the counting process, counting parameters can be
calculated, where 0 < τ ≤ t, as follows.

• The number of visits to user state i during (0, t] : Ni(t) =∑N(t)−1
n=0 1{Sn=i}.

• The number of transitions from user state i to user state j

during (0, t]: Nij(t) =
∑N(t)

n=1 1{Sn−1=i,Sn=j}.
• The number of transitions from user state i to user state j

during (0, t] with the sojourn time τ in state i: Nij(τ, t) =∑N(t)
n=1 1{Sn−1=i,Sn=j,Xn=τ}.

The empirical estimations of the user-state transition matrix
pij , the conditional distributions of sojourn times fij , and the
discrete-time semi-Markov kernel qij are given in [25] by

p̂ij(t) =Nij(t)/Ni(t), f̂ij(τ, t) = Nij(τ, t)/Nij(t)

q̂ij(τ, t) =Nij(τ, t)/Ni(t). (16)

The given empirical estimations in (16) approach nonpara-
metric maximum likelihood estimations with having good
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asymptotic properties if they maximize the likelihood func-
tion of

L(t) =
N(t)∏
n=1

pijfij(Xn)

⎛
⎝1 −

∑
j

B(t)∑
τ=n

qij(τ)

⎞
⎠ (17)

where B(t) = t−XN(t) is called the age process showing the
sojourn time in the last visited state SN(t).

With the evaluation of (17), the corresponding transition
density kernel turns into

Qij(s, τ0, τ)
update
=

Qij(s, τ)−Qij(s, τ0)

Qij(s, τ0)
(18)

where τ0 is the elapsed time since the first entrance into user
state i.

Finally, beginning from the default status in (14), the evolv-
ing inhomogeneous state transition probability (5) is updated
by (18) together with (3) and (4) as in (15).

5) Observation Emission Matrix: The least power-
consuming sensor on today’s smartphones is the accelerometer
[11]. Therefore, the accelerometer sensor is considered used
in the implementation of HAR-based applications. Blackberry
RIM Storm II 9550 smartphone is chosen target device. Storm
II consists of three-axis accelerometer named ADXL346 from
Analog Devices [26]. While any application is running, the
target smartphone is only connected to a Third-Generation (3G)
network, and background operations are kept at minimum.

For performance evaluations, first, two user states, which are
sitting and standing, and four user states, which are sitting,
standing, walking, and running, consisting statistical machines
are considered for the framework. However, more complex
models can be applied as well by using similar system ap-
proach. In our previous work [27], an unsupervised classifi-
cation method to detect user-centric postural actions, such as
sitting, standing, walking, and running, by smartphones is stud-
ied. By adopting these works into our current study, recognition
between user states is made. Then, the observation emission
matrix for two and four user states are constructed by adopted
algorithm as

ojz =

[
prob. of sitting

prob. of standing

]
,

⎡
⎢⎣

prob. of sitting
prob. of standing
prob. of walking
prob. of running

⎤
⎥⎦ . (19)

B. Output of the Context Inference Framework

Supposing πi(0) > 0 where ∀i ∈ S, the Markov process ξn
evolves in bidirectional way over the distributions of P[n,n+ń]

and P−
[n,n+ń], where ∀n ∈ Z

+ and ∀ ń ∈ N, and the user-state
transition matrix also obeys a condition of pij > 0 ↔ pji > 0,
then ξn satisfies

lim
t↓s

πi(s)pij(s, t)

πj(s)pji(s, t)
= 1 (20)

which indicates that the inhomogeneous Markov process has in-
stantaneous reversibility at time s; hence, it yieldsπ(s)Q(s)=0.

Fig. 2. Entropy rate analysis. The convergence of entropy production rate
might differ depending on how accurate the context inference is made under
different sampling frequencies.

Having the reversibility feature defined by (20), the instanta-
neous entropy production enp of ξ at time n is given by

enp =H
(
P[n,n+1], P̄[n,n+1]

)
=

1
2

∑
i,j∈S

[
πn
i p

n
ij − πn

j p
n
ji

]
log

πn
i p

n
ij

πn
j p

n
ji

(21)

where H(P[n,n+1], P̄[n,n+1]) is the relative entropy of distribu-
tion of (ξn, ξn+1), P[n,n+1], with respect to the distribution of
(ξn+1, ξn), P̄[n,n+1].

By using (21), Fig. 2 shows the convergence of entropy rate
under some sensory operation parameters, such as a fixed DC
DC = 1 along with variant sampling frequencies fs = {100,
50, 25, 12.5} Hz. The aggressive sampling method, which takes
100 Hz as fs, draws an actual track of the entropy rate. Circles
over the blue line indicate a difference in user behavior. Since
user states, such as sitting and standing, are recognized in this
application example, the frequentness of transition from one
user state to another cannot be observed much due to the nature
of human being, which requires high energy effort by users
throughout the application running time. Therefore, user-state

transition matrices over time are desired as pij=

[
0.9 0.1
0.1 0.9

]
,[

0.85 0.15
0.1 0.9

]
,

[
0.8 0.2
0.1 0.9

]
,

[
0.75 0.25
0.1 0.9

]
,

[
0.6 0.4
0.1 0.9

]
,

[
0.5 0.5
0.1 0.9

]
.

According to the results obtained by a HAR-based smart-
phone application, the entropy rate converges late while sam-
plings are collected at less than 100 Hz. This indicates the
reason why accuracy ratio decreases as well. In addition, the en-
tropy rate cannot sometimes converge into any point and stops,
where the plot lines belonging to fs = {12.5, 25, 50} Hz. When
the frequentness of user-state transitions increases, sampling
frequency may not be fast enough to capture the activeness of a
user profile. Therefore, the system cannot find any proper user-
state transition matrix to define instant user activity profile.

After all these assessments on the characteristic of entropy
rate analysis with respect to a changing user activity profile, let
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ep(s, t) denote a sequence of entropy rates from (21) in the time
range of s up to t. Moreover, assume that a simple threshold
is defined by εep = [μep − σep , μep + σep ], where μep and σep

are the mean and standard deviation of ep(s, t), respectively.
Thereby, the first output delivered to the sensor management
system by the statistical machine as shown in Fig. 1 is named
as accuracy notifier, which is defined by

φ(s, t) =
1

(t− s+ 1)

t∑
n=s

1(enp∈εep). (22)

Moreover, τii denotes a return time, i.e., elapsed total sojourn
time, to user state i entering at s, as

τii =

{
min{n = t− s, n ≥ 1, St = i|Ss = i}
∞, St �= i, t ≥ 1

(23)

represents the amount of time until the process returns to the
same user state i given the fact that it started from user state i.
Note that it may never return back to the same state i.

By considering that a time variable tsuff is assigned during
application run to indicate a sufficient time interval in which
user state i would not change, the second output is defined then
using (22) and (23) by

a(t) =

⎧⎨
⎩

1, φ(s, t) ≥ φ, τii > tsuff
2 φ(s, t) ≥ φ, τii ≤ tsuff
3, φ(s, t) < φ

(24)

where φ ∈ [0.5, 1], and a(t) denotes the actions for sensory
management introduced in Section V-B.

V. SENSOR MANAGEMENT SYSTEM

Here, the effect of variant sensory load profiles on the de-
pletion of mobile device battery is studied. Then, these battery
discharge profiles are examined within the concept of the
Markov reward process. In addition, there are five novel solu-
tions provided here for balancing the tradeoff existing between
accuracy in the user-state recognitions and power consumption
required by the recognition process.

A. Sensor Utilization

The smartphone accelerometer sensor is utilized to examine
the power efficiency achieved under different sampling and
duty cycling strategies. Assume that a set of DC and a set of
fs are given by {1, 0.75, 0.5} and {100, 50, 25, 12.5} Hz,
respectively. Moreover, let a state space lie over two sub-
spaces, which are sets of DC and fs, as in SR2

= {DC × fs}.
Thus, the state space is defined as in

SR
r = SR2

{l,k} =
{
SR2

{1,100}→1, S
R2

{1,50}→2, . . . , S
R2

{0.5,12.5}→W

}
(25)

where SR2 → SR : {DC = l, fs = k} → r, ∀ l ∈ DC, ∀ k ∈
fs and W = length(DC)× length(fs).

The state space SR or SR2
is considered to represent differ-

ent sensory operation methods supported by the accelerometer
sensor in a sensor management system.

Fig. 3. Battery lifetime analysis. The total lifetime for battery depletion differs
due to variant sensory operation methods within the smartphone accelerometer.
Experiment values are taken at every 20-min time intervals.

To be able to see the effect of SR on the battery depletion, an
application is implemented on the target device. The application
runs from a point where the smartphone battery is fully loaded
until it totally depletes. Only one constant pair of sampling
frequency and DC, i.e., a state in SR, is applied as sensory
operation parameters to the accelerometer at each application
run. A total time for sensory operation cycle, which is denoted
tc, is taken as 1 s. For instance, where fs = 100 Hz, DC =
100%, and tc = 1 s are taken, the total number of samplings
per second becomes 100.

The application results are shown in Fig. 3. Note that the
Blackberry Java 7.1. SDK only reveals the remaining battery
status. According to results, the more aggressive is sampling
methodology applied, the faster the battery depletes. In addi-
tion, the lower value of DC makes the battery recover effect
more significant, thus prolonging the battery lifetime. However,
the battery nonlinearities [28] are not intended to be studied in
this paper.

After the application results shown in Fig. 3 together with
[26] and our previous work [29], the sampling-frequency-and-
DC-dependent power consumption model in the accelerometer
sensor operations can be defined as

Θω∗12.5Hz =ω ∗ Ωsample + (ωmax − ω) ∗ Ωidle

Θtc =
(DC)tc

ωmax/fsmax
Θω∗12.5Hz +

(1 − DC)tc
1/fsmax

Ωidle

(26)

where ω = {1, 2, 4, 8}; Ωsample and Ωidle are defined as the
power consumption that occurred during the operations where
sensor makes samplings or runs idle, respectively; and tc is the
time span through a power cycle.

By using (26) and the application results obtained for Fig. 3,
Table II shows power consumption ratio of each sensory oper-
ation methods by the accelerometer, where the least aggressive
sampling method, i.e., DC = 50% and fs = 12.5 Hz, is taken
as a normalizing factor.
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TABLE II
POWER CONSUMPTION RATIO IN SENSOR DRAIN PER EACH

OPERATION CYCLE: tc = 2 s, AND COMPARISONS

ARE APPLIED BASED ON (50%, 12.5 Hz)

To this end, assume that a semi-Markov chain represents
the evolution of changing sensory operation methods SR for
a desired sensor management system. The chain consists of a
finite state space SR = {1, . . . ,W}, the state transition density
matrix qR ∈ QR, and the state transition matrix pR ∈ PR,
where QR, PR ∈ R

W×W. In addition, a reward structure can
be attached to this on-going chain, and it can be thought as a
random variable associated with the state occupancies and tran-
sitions. Moreover, assume that the reward, denoted by ψ, is seen
as power consumption per unit time while a mobile device bat-
tery is discharging, and SR is redefined as the battery discharge
profiles/states. Thereby, the total reward, i.e., total power con-
sumption, depends on the total visiting time in a state r where
r ∈ SR. Then, it can be said that the reward ψr belonging to
state r is proportional to the corresponding power consumption
defined by (26).

Finally, the general evolution of a semi-Markov reward
process to describe power consumption caused by sensory
operations in the sensor management system is given by

Vw(s, t) = Vr(s, t− 1) +
∑
w∈W

pRrw(s, t− 1)ψw(s, t) (27)

where the left-hand side V represents the expected present
value of all received rewards from time s to t given that the
process enters into state i at time s, whereas the first element of
the right-hand side represents the aggregation of rewards earned
both at previous time, and the second element is the reward
obtained from either continuity in the same state or transition
to another state.

B. Tradeoff Analysis: The Description of Action Set

There are five different solutions proposed to respond to the
defined tradeoff between sensing accuracy and power consump-
tion. The proposed solutions aim at reducing power consump-
tion by intervening sensory operations. Therefore, the context
inference framework always receives the manipulated sensory
samplings and then tries to recognize user states accurately ac-
cording to (12) and (13). After the recognition process is done,
it releases a(t) as in (24), which defines actions to be taken on
sensory operations. These actions force the proposed solutions
to adjust a pair of DC or sampling frequency dynamically
while sensory sampling operations are actively operated. As
a result, a feedback system is integrated into a cyber-physical
sensor management system that balances the increase in power
efficiency with the decrease in user-state recognition accuracy.

Actions are defined as commands {1, 2, 3} for sensor
management, which are to decrease, preserve, and increase
power consumption, respectively. If the entropy rate is not
stable, which means user profile changes frequently, thereby
corresponding entropy rate does not converge a specific value.
Action #3 needs to be taken in this case to increase the power
consumption in sensory operations by making more aggressive
samplings. In contrast, if the entropy rate converges and hangs
in a specific margin, then action #2 preserves the same setup for
applied sensory operations. More significantly, if the same user
profile has been observed at least for a sufficient time tsuff , then
action #1 is taken to reduce power consumption by estimating
that user profile is expected to stay on hold.

C. Intuitive Solutions

Intuitive solutions either reduce power consumption by de-
creasing DC or/and fs, or improve accuracy in user-state recog-
nition by increasing them. Relevant adjustments are regulated
by action set of a(t). There are three different intuitive solu-
tions, as proposed in the following.

1) Method I: This method tries to change DC in the first
place rather than to change fs. Let the pairs of DC and fs lie
over a space SR2

, which is defined in a matrix of {DC, fs} →
{l, k}, where l ∈ DC and k ∈ fs. Method I (MI) proposes how
to wander over the defined space according to actions by

SR2

(l, k)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

SR2
(l − 1, k), a=1, l �= lmin

SR2
(l, k−1), a=1, l= lmin, k �=kmin

SR2
(l+1, k), a=3, l �= lmax

SR2
(l, k+1), a=3, l= lmax, k �=kmax

SR2
(l, k), otherwise.

(28)

2) Method II: This method, in contrast to MI, makes the
adjustments in fs in the first place. Then, the relevant state
transitions over SR2

become

SR2

(l, k)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

SR2
(l, k−1), a=1, k �=kmin

SR2
(l−1, k), a=1, k=kmin, l �= lmin

SR2
(l, k+1), a=3, k �=kmax

SR2
(l+1, k), a=3, k=kmax, l �= lmax

SR2
(l, k), otherwise.

(29)

3) Method III: In this method, state transitions are executed
according to the ascending order of power consumption ratios
shown in Table II. The definition of (25) is then recharacterized
as in SR = ascend(SR). Hence, both DC and fs could be
changed simultaneously, i.e.,

SR(r) =

⎧⎨
⎩

SR(r − 1), a = 1, i �= rmin

SR(r + 1), a = 3, i �= rmax

SR(r), otherwise.
(30)

In summary, intuitive solutions (28)–(30) regulate pR and
hence affect the evolution of (27).

D. Constrained Markov Decision Process

The constrained Markov decision process (CMDP) is applied
into the sensor management system by setting a Markov-
optimal policy u. This policy controls sensory sampling
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operations by deciding which pair of DC and fs need to
be assigned in the sampling process, and it randomizes the
decisions over given actions.

The CMDP parameter set is provided as follows.

• Decision epochs O are the outputs obtained from the con-
text inference module. State space SR and action space A
are given by (25) and (24), respectively.

• State transition probability P a
rw: This probability matrix

defines transition probabilities among states {r → w}
while action a is taken, i.e.,

P a
rw =

⎧⎪⎨
⎪⎩

1
r−1 , a = 1, w < r
1, a = 2, w = r

1
W−r , a = 3, w > r
0, otherwise.

(31)

Remark that all transitions that form a specific state are
set an equal probability according to the rule of actions.
Different transition probabilities could bring an unfair
selection of state.

• Accuracy cost c(r, a): The accuracy cost is the retrieved
error rate in user-state recognitions while the context in-
ference framework is running, which is defined by φ in
(22), and is given as follows:

c(r, a) = 1 − φa
r . (32)

On the other hand, the default settings for the accuracy
cost is ruled by the rate of missing sampling points under
different system states, where {(S = r)} → {(DC = l)×
(fs = k)} and ∀ a ∈ A

c(r, a)default = c ({l, k}, a) = 1 − l + l
k

kmax
. (33)

Remark that the default settings are the maximum error
rates, indeed.

• Power consumption d(r, a): The power consumption ratio
is the reward process ψr

d(r, a) = ψr ∀ a ∈ A. (34)

The policy aims to maximize the accuracy in user-state
recognitions subjected to the power constraints. Therefore, a
CMDP distinguishes from a regular MDP in the added power
consumption function d, which is related to the constraints Vy

where y ∈ [1, Y ].
ρ(r, a) is denoted in CMDP as the occupation measure by

specifying the probability of a relevant state–action pair in the
decision process, which satisfies the given constraints, whose
probability distribution is given by

f(γ, u, r, a) =

∞∑
t=1

u

Pr
γ

(
SR
t = r, Ar = a

)
(35)

where γ and u are defined as any initial distribution and any
stationary policy, respectively.

Having (31)–(34), the constrained optimization problem is
given by the following requirements:

min
ρ

∑
r

∑
a

ρ(r, a)c(r, a)

subject to
∑
r

∑
a

ρ(r, a) (δw(r)− P a
rw) = 0,

∑
r

∑
a

ρ(r, a) = 1, ρ(r, a) ≥ 0 (36)

where ∀ r, w∈SR, ∀a∈A, δw(r)={1, r=w; 0, otherwise}.
Let u be the optimal policy that satisfies for all i, a, i.e.,

ur(a) =
ρ(r, a)∑
a ρ(r, a)

∀ r ∈ S, ∀ a ∈ A (37)

whenever the denominator is nonzero. Since the occupation
measure is derived from

ρ(w) = γ(w) +
∑
r

∑
a(r)

ρ(w, a)P a
rw

= γ(w) +
∑
r

ρ(r)
∑
a(r)

ρ(w, a)

ρ(w)
P a
rw

= γ(w) +
∑
r

ρ(r)
∑
a(r)

uw(a)P
a
rw

= γ(w) +
∑
r

ρ(r)Prw(u) (38)

it is concluded that ρ equals to γ(I − P (u))−1 like defined in
(36), and hence to (35), where I is the identity matrix.

In addition, the following constraints are added into (36):∑
i

∑
a

ρ(r, a)dy(r, a) ≤ Vy, y = 1, . . . ,Y (39)

where Vy(t) = (1 ± ν)Vy(t− 1) is given for the constraint
according to which action is taken, such as {a = 1 : −ν} and
{a = 3 : +ν}, where 0 < ν < 1 and {a = 2 : ν = 0}.

Finally, the constrained optimization problem is defined from
(36) and (39) as {min c subject to dy ≤ Vy}, whose solution
is described in [30] and [31], and solved based on linear
programming as follows: Find the minimum C∗ ∈ C(γ, u)
for u defined in (37), ρ ∈ f(γ, u) defined in (38), C(γ, u) =
C(ρ(u)), and each Dy(γ, u) = Dy(ρ(u)), where the expected
cost is expressed as in

C(γ, u) =E
u
γ

{ ∞∑
t=1

c
(
SR
t = r,At = a

)}

=
∞∑
t=1

E
u
γc
(
SR
t = r,At = a

)

=

∞∑
t=1

∑
r

∑
ai

Pr
(
SR
t = r,At = a

)
c(r, a)

=
∑
r

∑
ar

∞∑
t=1

Pr
(
SR
t = r,At = a

)
c(r, a)

=
∑
r

∑
ar

f(γ, u, r, a)c(r, a). (40)

In the similar way, for the constraints

Dy(γ, u) =
∑
r

∑
ar

f(γ, u, r, a)dy(r, a). (41)
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Under the policy u from (37) and derivation from (40) and
(41), the expected average accuracy and power consumption
cost is then defined by

E
u[C] =

1
n

n∑
n′=1

E
ucn′(i, a) (42a)

E
u[V ] =

1
n

∑
∀y

n∑
n′=1

E
udyn′(i, a) (42b)

where n′ and n are the instant and total decision epoch times,
respectively.

E. Partially Observable Markov Decision Process

The partially observable Markov decision process (POMDP)
also describes an optimal solution to respond to the defined
tradeoff. The parameter set by POMDP has some similarities
such as the one provided by CMDP. The same states SR, actions
a, and state transitions P a

rw are used in this model as well. A
POMDP relies on an agent that takes some action a ∈ A and
hence makes the system moves from state r to a new state w.
Due to the uncertainty in an action, the state transition is mod-
eled by P a

rw. In addition, the agent makes an observation x ∈ O
to gather information for the decision on the new system state
selection; thereby, the state-observation relationship is probabi-
listically modeled by Za

wx. In each observation epoch, the agent
takes action a in state r and then receives a reward R(r, a).

The POMDP parameter set is given as follows.

• Decision epochs O, state space SR, action space A, and
state transition probability P a

rw are given the same such as
in Section V-D.

• Observation emission probability Za
wx: The observation

is the accuracy ratio provided by the context inference
module (see Section IV-B), i.e.,

Za
wx(t) =

1
|Z|

{
φ(t), r = w

(1 − φ(t)) , r �= w
(43)

where SR
(t−1) = r, SR

t = w, ∀ a ∈ A, |Z| = φ(t) + (W −
1)(1 − φ(t)), and x = 1 since there is only one observa-
tion, which is the accuracy ratio.

• Reward function Ra
r (t): The reward process (i.e., power

consumption) ψr is defined in Section V-A, i.e.,

Ra
r (t) = ψr ∀ a ∈ A. (44)

• Belief vector λa
r(t): Since the internal state of the under-

lying POMDP is not directly observable, the knowledge
of the internal state could be provided by a belief vec-
tor λa

r(t) ∈ Λ in the presence of the history of all past
decisions and observations. The belief vector gives the
conditional probability of being in state r under action a
prior to any state transition.

The belief vector is updated whenever a new knowledge
comes in after incorporating the action and observation ob-
tained at time t within the history set of H(t) = {a(τ), O(τ)},

τ ∈ [1, t]. The updated belief vector is obtained using (43) by
the Bayes rule, i.e.,

λa
w(t+ 1) = T (λ(t) | a,O) =

Za
wx

∑
i P

a
rwλ

a
r(t)∑

x Z
a
wx

∑
r P

a
rxλ

a
r(t)

. (45)

The goal defined by POMDP is to develop an opportunistic
sensor sampling strategy that seeks for a favorable tradeoff
balance between accuracy in sensing and energy efficiency.
Hence, a sensing policy u∗ : Λ → A is defined to map a belief
vector λr to an action a. The policy u∗ is presented by a
sequence of functions {u∗ = [η1, η2, . . . ,∞]}, where ηt maps
a belief vector λr(t) ∈ Λ to an action a ∈ A at time t over the
infinite horizon of POMDP.

From the time at the current belief vector is λ(t), a value
function Vt(λ(t)) is denoted to represent the minimum ex-
pected remaining reward that can be earned under the assigned
policies. This reward is obtained through immediate and future
rewards. The optimal policy strikes a balance between earning
immediate reward and obtaining a lean toward future decisions
on the system.

The optimal strategy aims at minimizing the expected total
reward, and it is defined together with (44) and (45) as

u = argmin
u

Eu

[
T∑

t=1

Ra
r (t) |λ(1)

]
. (46)

Hence, the value function for the total reward aggregation is
given with the help of (46) as

Vt (λ(t)) = min
a

E [Ra (λ(t)) + ϕVt+1 (T (λ(t) | a, Sa
r (t)))]

(47)

where Ra(λ) =
∑

r λrR
a
r , and ϕ ∈ [0, 1] is a discount factor.

Due to the impact of the current action on the future rewards,
an uncountable number of belief states lie over an infinite
horizontal space. Therefore, specifying nonstationarity of the
optimal policy or finding an optimal strategy for POMDP is
often computationally prohibitive.

1) Myopic Strategy and Sufficient Statistics: Since finding
an optimal strategy is computationally restricted, it is cru-
cial to exploit the available POMDP and develop suboptimal
strategies to reduce the complexity. Therefore, it is needed
to show the a posteriori of distribution of the belief vector
under sufficient statistics. The belief vector (45) is then up-
dated based on the chosen action under the following sufficient
statistics:

λr(t+ 1) =

⎧⎪⎨
⎪⎩
(
λ(t)Tr P

a
rw

)T
, a′ = {1, 3}, r �= w

λi(t), a′ = 2, r = w

0, otherwise

(48)

where superscript T denotes the matrix transpose.
In addition, a myopic policy is introduced to ignore the im-

pact of current action on the future rewards by solely focusing
on minimizing the immediate reward. This is due to the fact that
power consumption caused by instant sensory operation set-
tings does not rely on future diversity in the sensory operation
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methods. Thereby, the myopic policy makes ϕ = 0 in (47);
hence, it turns (46) into

SR
∗ = argmin

r
E [Ra

r (λ
a
r(t))]

subjects to max
(
Za
w,O=x(t)

)
> ε (49)

where SR
∗ is the chosen optimal state, and ε denotes the

minimum probability of given accuracy allowed by the process.

VI. PERFORMANCE EVALUATION

A case study in the HAR-based application model is exam-
ined to investigate the defined tradeoff by the proposed sensor
management system. The targeted smartphone is placed fixed
on user’s hip area. A similar user activity profile is examined
for each tradeoff analysis by five different participants. They are
three males and two females, whose ages range from 18 to 30.
Accordingly, the HAR-based user activity profile begins with a
random activity pattern of user states sitting and standing for
a minute (used for calibration); then, any of user states sitting,
standing, walking, and running transits into the another one in
the end of the following sojourn times of {5, 5, 10, 10, 30, 30,
60, 60, 100, 100, 300, 300} s. This procedure is also performed
three times (approximately 50 min in total per method by each
individual) to see the effect of having a transition from longer
waiting time to shorter waiting time, or vice versa. The initial
1-min-long application time is used for the adaptation process,
which is reserved to set required adjustments in the system
parameters with respect to the ongoing activity pattern. Note
that system parameters already have default settings defined by
(14). From this point, sensory operation parameters, which are
DC and sampling frequency, are updated with a 10-s period. In
addition, tsuff is set to 20 s. Recall that, as long as a continuing
settlement time in any state is longer than tsuff , the sensor
management system will decrease power consumption, which
jeopardizes recognition accuracy of the activity pattern in re-
turn. The default sensory operation parameters are set to the ag-
gressive sampling method, which is equal to the pair of {100%,
100 Hz} for {DC, fs}.

The context inference module is set to recognize a user state
with a period of 1 s under the aggressive sampling method.
The underlying Markovian chain in this module has a finite
horizon length of 60, which means a-minute-long recent history
of user states. Every 1 min, system parameters are updated
according to (15). Except for the aggressive sampling method in
sensory operations, the context inference module may not have
a sensory observation at any time. For instance, in a case where
the pair of {50%, 50 Hz} is selected for sensory operation
parameters, the decision period to recognize a user state is
extended to 4 s, which results in having three empty decision
points to estimate missing user-state recognitions.

The tradeoff analysis is carried out for each sensor manage-
ment method by each participant. The tradeoff solutions by
each method are averaged, and then shown in Fig. 4 for the
analysis of power consumption ratio according to (27), (42b),
and (47), and also in Fig. 5 for the analysis of averaged recogni-
tion accuracy according to (22), (42a), and (49). In addition, the
tradeoff solutions by each method in both figures are noted by

Fig. 4. Averaged power consumption ratio in response to user profile: The
evolution of power consumption efficiency in comparison to the most aggres-
sive sensory sampling methods is shown for each proposed sensory operation
method in response to the analyzed user profile. Overall, 40% enhancement in
power consumption caused by the smartphone accelerometer is achieved.

Fig. 5. Averaged recognition accuracy ratio in response to user profile. Having
shown a drastic decrease initially due to the default system parameters, the
recognition accuracy ratio heals gradually, while the context inference module
gets better adaptation toward the analyzed user profiles and ends up with an
overall 10%–15% decrease in accuracy ratio for user-state recognitions due to
the proposed framework.

the suffixes “a” and “b” to demonstrate without/with some con-
straints added. The suffix “a” indicates the actual sensor man-
agement methods without any additional constraints. However,
the suffix “b” sets extra rules on these methods. First, a 10%
tolerance value is added into Methods I, II, and III to constrain
the recognition accuracy ratio, which help the prevention of
drastic recognition errors. If this constraint is exceeded, sensory
operation parameters are forced to set the default settings, i.e.,
the aggressive sampling. Second, for CMDP, there is another
constraint set on the power consumption ratio to control the ten-
dency of the decision process to take an immoderate decrease
in power consumption. According to this regulation, current
sensory operation setting must stay in ±25% of the present
power consumption level at most for the next setting. Finally,
due to the additional constraint for POMDP, the update process
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of the belief vector is reconfigured by adding the feature of
λi(t+ 1) = 1, where a = 2.

In light of the explanations above, the following discussions
can be made through both Figs. 4 and 5.

• Recognition accuracy ratio decreases significantly during
the initial progress of context inference module since the
framework begins running with default settings. There-
fore, the adaptation process toward a user activity profile
by the framework is not adequate yet. It is also because
that users exhibit variant activity profiles that make the
adaptation process take different time accordingly.

• Both figures show ups and downs, i.e., zigzag lines, to
prove the defined tradeoff. This is because sensor man-
agement system always seeks for an opportunity to save
in power consumption. However, this also jeopardizes
the accuracy problem. In contrast, accuracy is healed
by boosting power cost. Therefore, increase in power
consumption compensates the worsening the recognition
accuracy ratio, whereas decrease in power consumption
receives benefits from the adaptation feature if possible
where the framework shows high accuracy.

• When the time passes by and the framework gets a better
adaptation to the user activity profile, the recognition ac-
curacy ratio increases, although power consumption ratio
decreases. It is also because at all user activities are known
by the framework at this point and will lead to have
continuity of better enhancement on tradeoff solutions.

• While switching from a longer waiting time to a slower
waiting time, during the second or third run of the defined
user activity pattern, accuracy decreases even if power
consumption increases. It is because the system has been
fully aware that the same user activity has been continuing
for a longer waiting period. Moreover, it is also giving
higher recognition accuracy compared with what it is cur-
rently available in the presence of higher-pace variant user
activities.

• The recognition accuracy ratio may show a slight decrease
if a state transition occurs after a long state visiting time
or if the number of estimations in user-state recognition
increases after a slower sampling policy is attained. This
is because the entropy rate cannot converge into any stable
point. In such cases, the framework attempts to fix the ac-
curacy ratio.

• Among the intuitive solutions, a comparison can be made
by MIII > MI > MII in terms of the power consumption
ratio and by MI > MIII > MII in terms of the recognition
accuracy ratio. Results show that the sampling in slower
frequencies consume higher power than the sampling in
lower DCs; however, it shows the opposite assumption
for the recognition accuracy. It is because sampling in
slower frequencies still obtains information about user
activity while the sampling in lower DCs cannot do. On
the other hand, MIII has the highest power consumption
since it switches sensor operation modes modestly while
achieving fine accuracy in user-state recognitions.

• MXb > MXa, where X = I, II, III and CMDPb > CMDPa
are met in terms of the power consumption ratio due to the

fact that the aggressive sampling is forced to apply in case
where severe errors occur in user-state recognitions.

• POMDPb makes a clear conclusion about the belief vec-
tor rather than POMDPa does when a sufficient visiting
time elapsed on a specific user state. Hence, the power
consumption decreases since the conclusion notifies the
continuity of the same user state.

• MIII responds in a similar way that CMDP has while
trying to reach their optimal policies.

In general, our novel tradeoff solutions achieve overall 40%
enhancement in power consumption caused by the physical sen-
sor work with respect to overall 10%–15% decrease in accuracy
ratio for user-state recognitions due to the proposed generic
context inference framework. The novelty of our framework
also comes from the integrated adaptability feature toward vari-
ant user behaviors along with the online recognition accuracy
tracker while providing optimal adaptive sampling strategies to
achieve energy efficiency within the research area of mobile-
device-based activity recognition. In contrast, some other recent
studies within the same concept show enhancement in power
efficiency by 20%–25% in [32], by 5%–10% in [33], and by
10%–30% in [34] while satisfying considerable recognition ac-
curacy under nonadaptive, deterministic, and variant sampling
frequency or DC applying sensor sampling methods.

VII. CONCLUSION

In this paper, a novel comprehensive framework has been
presented within the futuristic concept of context awareness in
mobile sensing. A statistical-machine-based context inference
model together with an intelligent sensor management system
is created to recognize human-centric activities. This approach
aims at achieving a fine balance between power consumption
and recognition accuracy. The study takes the smartphone
accelerometer sensor into the scope to show the effectiveness
of proposed total system structure, as well as leaving the door
open for future improvements in the functionality of other
smartphone sensors.

While creating the statistical machine, some features are
taken into the consideration, such as time-varying user activity
profile, system adaptability to the changing profile, nonuniform
time distribution of sensory sampling process due to the power
saving precautions, and the estimation process where missing
sensory observations exist. On the other hand, while creating
the sensor management system, the analytical modeling of
power consumption caused by the accelerometer is examined.
Thereby, along with the collaboration of the statistical machine,
a better balance is achieved for the defined tradeoff throughout
this paper. For the tradeoff analysis, some intuitive and optimal
sensory operation solutions are provided to increase efficiency
in power consumption, whereas the statistical machine tries to
maintain the accuracy ratio provided by the framework.
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