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Abstract—Vehicular ad hoc networks (VANETs) which are
deployed along roads make traffic systems safer and efficient.
Existing theoretical results on capacity scaling laws provide in-
sights and guidance for the design and deployment of VANETs. In
this paper, we propose a novel fundamental framework RVWNM
(Real Vehicular Wireless Network Model), which enables a more
realistic capacity analysis in VANETs. We first introduce a
Euclidean planar graph which can be constructed from any
real map of urban area, and represents the practical geometry
structure of the urban area. Then, an interference relationship
graph is abstracted from the Euclidean planar graph which
considers the transmission interference relations among the nodes
in the network. Finally, we analyze theoretically the interference
relationships in the interference relationship graph. As far as
we know, we are the first to use a practical geometry structure
to calculate the asymptotic capacity of VANETs. To verify the
feasibility of RVWNM, we calculate the asymptotic capacity of
urban area VANETs with the consideration of social-proximity
based mobility of vehicles.

I. INTRODUCTION

As the development of wireless networks [1-3],
VANETs(Vehicular Ad hoc Networks) become to an
important branch. VANETs can offer safety and traffic
information without using a wired backbone. Capacity,
as an important and fundamental property, is critical for
VANETs theoretical analysis [1]. However, determining the
capacity of distributed wireless networks is one of the most
general but challenging problems. The existing techniques
and inequalities from information theory cannot efficiently
tackle this problem. Thus, some probability and statistical
methods have been proposed to analyze and calculate the
capacity of ad hoc networks [5, 6]. These technologies have
brought a rapid progress in the study of capacity under
various scenarios during the last decade.

However, three unique properties of VANET make the
analysis by using probability and statistical technologies in
VANETs difficult. Those properties can be summarized as
follows.

• Since all vehicles can only move along roads, the layout
of roads in an urban area directly affects the capacity of
the VANET.

(a) Grid-like structure (b) Real-world map of urban area

Fig. 1. Grid-like structure and real map of an urban area

• Since the geometries of the roads in different urban areas
are different, we cannot use a universal model for all
urban areas.

• Since vehicles move neither randomly nor completely
regularly, their mobility can only be characterized in a
statistical mannner.

In 2007 [7], Pishro-Nik et al. proposed a grid-like con-
struction to demonstrate all the roads in an urban area as
shown Fig. 1 (a). Every line of the construction denotes a
road, and the m vertical lines intersect with the m horizontal
lines, which compose a grid-like construction. In 2012 [13],
Lu et al. extended the work of Pishro-Nik et al. [7] and
obtained an almost constant per-vehicle throughput in high-
density scenario. We can see in Fig. 1 (b) that different areas
of an urban have different road densities, and the shapes of the
areas surrounded by the roads differ even more significantly.
Therefore, if we use a normalized gird-like construction to
model an urban area, we cannot obtain an accurate and suitable
asymptotic capacity.

To solve the above problem, we propose a new fundamental
framework RVWNM constructed by a Euclidean planar graph
and an interference relationship graph. RVWNM is a real
construction of vehicular network because it is abstracted
from real-world map and has all the geometry property of
such a real-world map. In addition, it is convenient to use
methods in Graph Theory to analyze a RVWNM. The inter-
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ference relationship graph is obtained through abstracting the
Euclidean planar graph which will be introduced in Section
III. To schedule the interference in MAC layer of wireless
transmission, we use the protocol interference model in [14]
as our interference model.

Under the RVWNM, we calculate the throughput capac-
ity limits of the urban social-proximity VANET to achieve
Θ(1/n) in sparse area and constant capacity bounds in high
density area, where n denotes the number of vehicles. The
following is a summary of our contributions:

• We propose a new framework RVWNM constructed by
a Euclidean planar graph and an interference relationship
graph. The Euclidean planar graph can be abstracted from
real map of any urban area. Different from the general
and inaccurate result obtained under the general grid-like
construction, which neglects the non-uniform of urban
roads and the difference between different urban areas,
the asymptotic capacity obtained under this framework is
targeted and accurate.

• We abstract the interfenence relationship graph from
Euclidean planar graph based on the interference between
units. We introduce the independent set of graph theory to
demonstrate the interference relationships between units.
The independent set makes the analysis and calculation of
concurrent transmission flows easier, which is important
for the calculation of asymptotic capacity.

• To verify the feasibility of the proposed method, we
calculate the asymptotic capacity of two-hop vehicular
networks with the protocol interference model. We show
that the constant capacity bounds could be achieved at
high density area and the asymptotic capacity in sparse
area is bounded by Θ(1/n).

To the best of our knowledge, this is the first framework
that offers a targeted and accurate asymptotic capacity, which
is different from the normalized grid-like construction. This
framework also can be used to calculate asymptotic capacity
under other scenarios with different interference models or
different routing schemes.

The rest of paper is organized as follows. Section II intro-
duces the network model, definitions of capacity and known
theorems used in the proof. Section III calculates the capacity
of VANETs. Section IV discusses the drawbacks of this paper.
Section V concludes the paper with future works.

II. SYSTEM MODEL

A. Network Model

The grid-like network geometry is convenient because of
its partially normalized structure. To derive a more accurate
theoretical capacity under a real scenario, we propose a novel
network model, constructed by a Euclidean planar graph and
an interference relationship graph. In this paper, we use the
real map of an urban area to construct the network model.
In Section III, we introduce the process of constructing the
model from a real-world map in detail.

To obtain the Euclidean planar graph of RVWNM, we define
the disk centered at the intersection in a real map with diameter

(a) A Euclidean planar graph
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(b) A simple example of in-
terference relationship graph

Fig. 2. Euclidean planar graph and interference relationship graph

r as a unit, where r is the transmission range. The transmission
range of a wireless communication equipment is about 300
meters, so the road between two adjacent intersections that
are 300 meters apart could be covered by units. Note that the
length of most roads is less than 300 meters, and vehicles
usually pass through the middle of the roads with high speed.
Thus, we can neglect occasional cases when vehicles are not
in coverage. The units in a real-world map are denoted by
vertices on the Euclidean planar graph according to their
coordinate in a real-world map. If there is a road between
two units, we place an edge between the two corresponding
vertices.

To an arbitrary real-world area, we can obtain an arbi-
trary RVWNM through abstract. For the general theoretical
asymptotic capacity, we assume that the overall area is S and
the perimeter is L. We consider units randomly distributed in
the area and the connection between each two adjacent units
is random. We abstract the above network area to derive a
random RVWNM.

Given a real-world map (Fig. 1 (b)), we treat every inter-
section as a center and draw a circle with a diameter r. The
road covered by a circle is a unit. All the units compose a unit
set U = {u1, u2, · · · , un}. The units in a real-world map are
denoted by vertices on the Euclidean planar graph according to
their coordinate in a real-world map. Place U on GE according
to the coordinate of units and place an edge between each two
units that are connected in a real-world map. Thus, we derive
an arbitrary Euclidean planar graph GE .

To obtain the theoretical results, we randomly choose a
region GR with perimeter L. For simplicity, we use the derived
Euclidean planar graph GR as a random Euclidean planar
graph as in Fig. 2 (a). In Fig. 2 (a), all the units denoted
by vertexes compose the set UR = {u1, u2, · · · , uNp

}, where
Np is the number of units in GR.

B. Mobility Model

Since vehicles move in a localized region, the density
of vehicles in the network is inhomogeneous. We use the
probability density function to represent the inhomogeneous
density of vehicles in the following contents.

In ad hoc networks, to simplify the calculation of asymp-
totic capacity, the i.i.d. (independent and identically dis-



tributed) mobility model is widely used. However, the traffic
of VANETs is not a random event, it has social-proximity
properties. Therefore, we employ the restricted mobility model
to represent the social-proximity traffic of VANETs. In the
Euclidean planar graph GR derived above, vehicles move
between units. Since vehicles move in a localized region
centered at a fixed home-point because of social activities,
each vehicle uniformly chooses a unit in GR as its home-
point. We call the covered area by a home-point as a sub-area
that does not overlap with each other.

Let Xi(t) denote the location of vehicle i at time t and
Xh

i (t) denote the location of the home-point of vehicle i at
time t where t is an integer that denotes the slot sequence num-
ber. The Euclidean distance between vehicle i and its home-
point at time t is defined by di, i.e. di =‖ Xi(t)−Xh

i (t) ‖. The
spatial stationary distribution of node can be described by a
generic, non-increasing function φ(d) in terms of the distance
d from the home-point, and we assume that φ(d) decays as
power law of exponent δ, i.e., φ(d) ∼ d−δ with δ > 0 as
paper [10] did.

We denote a function s(d) = min(1, d−δ) and normalize it
to derive a probability density function over the network area
φ(d) = s(d)∫∫

s(d)
, where δ > 0 denotes a uniform distribution

over the space. The value of δ is analyzed in [11].

C. Communication and Interference Model

We assume that during a time slot t only one packet can be
tansmitted. Due to the interference of wireless transmissions,
one vehicle cannot transmit with two other vehicles at the same
time slot. To schedule the transmission flows, we adopt the
protocol interference model introduced in [12], which roughly
represents the behavior of wireless MAC protocol. Protocol
interference model schedule is defined as follows.

At each time slot, a transmission from vehicle i to vehicle
j is successful only if: 1)

‖Xi(t) − Xj(t)‖ ≤ r

and 2) for any other vehicle l that transmits at t,

‖Xl(t) − Xj(t)‖ ≥ (1 + Δ)r

where Δ is a guard factor defining a protection zone around
the receivers.

D. Transmission Model and Relay Scheme

We assume each vehicle is the source of one transmission
flow and the destination of another transmission flow. Thus,
there are n transmission flows in the network concurrently.

Unicast flows transmit packets via two-hop relay scheme
proposed in [13]. If the source vehicle and the destination
vehicle of a transmission flow belong to the same home-
point, the source vehicle will transmit packet to the destination
vehicle directly. If they belong to different home-point, the
source destination vehicle will relay the packets through one
intermediate vehicle which has more contact opportunity with
the destination vehicle.

E. Definitions of Capacity

In this paper, capacity denotes the feasible throughput. The
capacity of VANETs is defined as follows.

Definition 1 (capacity of vehicle network) [14]: The
average capacity of vehicular network is of order θ(g(n)) 1

bits per second if there are deterministic constants c > 0 and
c < c′ < +∞ such that:

lim
n→∞Pr(λ(n) = c(g(n)) is feasible) = 1

lim
n→∞ inf Pr(λ(n) = c(g(n)) is feasible) < 1

Definition 2 (throughput capacity) [15]: Let G(T ) de-
note the number of packets received by all the vehicles during
time T . Capacity throughput λ(n) is feasible if there is a
scheduling scheme for which the following properties hold

lim
T→∞

Pr
(

G(T )
T

≥ λ

)
= 1.

F. Useful Known Results

In this paper, we will use the following existing results.
Lemma 1 (Groemer Inequality) [16]: Suppose that X

is a compact convex set and U is a set of points with mutual
distances at least one. Then

|U ∩ X| ≤ area(X)√
3/2

+
peri(X)

2
+ 1

where area(X) and peri(X) are the area and perimeter of
X , respectively.

Lemma 2 (Borel′s law of large numbers) [17]: Let
N(e) denote the number of times event e occurs in n trials
and p is the probability that e occurs. For any positive integer
ε, we have

lim
n→∞Pr

{∣∣∣∣N(e)
n

− p

∣∣∣∣ < ε

}
= 1.

III. CAPACITY CALCULATION OF VANETS

A. Maximum Number of Concurrent Transmission Flows

We introduce the independent set and maximum indepen-
dent number to analyze the wireless transmission interference
under interference relationship graph GP . The maximum in-
dependent set and maximum independent number are defined
as follows.

Definition 3 (maximum independent set [18]): In
graph theory, an independent set of an interference relationship
graph is a set of vertices that any two of them are non-adjacent.
A maximum independent set is the largest independent set for
a given graph.

Definition 4 (maximum independent number [18]):
The maximum independent number of a graph is the maximum
size of a maximum independent set.

1we use Knuth’s notation: Given two functions and g(n) ≥ 0, f(n) =
O(g(n)) means lim supn→∞f(n)/g(n) = c < ∞; f(n) = Ω(g(n)) is
equivalent to f(n) = O(g(n)); f(n) = Θ(g(n)) means f(n) = O(g(n))
and f(n) = Ω(g(n)).



In the interference relationship graph Gp derived above,
each vertex denotes a unique unit, and the edges represent the
interference relationship between vertices. If there is an edge
between vertices i and j, we say vertices i and j are adjacent
and have interference. Vehicles in units i and j cannot transmit
in the same time slot. According to the definition of maximum
independent set, each two vertices in a maximum independent
set Y are non-adjacent. Thus, the units denoted by the vertices
in set Y cannot transmit in the same time slot. Therefore, the
maximum independent number of a graph GP is the maximum
number of concurrent transmission flows M .

As shown in Fig. 2 (b), assume vertices a, b, c, d, e and f
are the vertices of the interference relationship graph GP . The
edge in the graph means that the two vertices at the end of the
edge cannot transmit packets at the same slot. According to
definitions 4 and 5, vertices a, b, c, f compose an independent
set A, vertices d and e compose an independent set B. Vertices
a, b, c, f can transmit at the same time slot, vertices d and e as
well. The elements of A cannot transmit when any element of
B is transmitting. In the small interference relationship graph,
we can easily find the maximum independent set A, and the
maximum independent number is 4. Thus, in one time slot,
at most 4 units can transmit packets without interference with
other vertices.

For arbitrary network geometry and random network ge-
ometry, we introduce a different calculation method to get the
maximum independent number, respectively. For the arbitrary
interference relationship graph, it is easy to obtain a maximum
independent number using the greedy algorithm. For a random
interference relationship graph, we introduce the following
Corollary from Lemma 1.

Corollary 1: In a square with area S and perimeter L,
suppose that X is a compact convex set and U is a set of
points with mutual distances at least (1 + Δ)r. Then

|U ∩ X| ≤ S√
3/2[(1 + Δ)r]2

+
L

2(1 + Δ)r
+ 1

Proof 1: We scale down the Euclidean planar graph with the
proportion (1+Δ)r : 1. In the original Euclidean planar graph
GR, the distance between each two elements of independent
sets is more than (1 + Δ)r. In the scaled down Euclidean
planar graph G′

R, the distance between each two elements
of independent set is more than 1. Simultaneously, the area
and perimeter of Euclidean scale down as proportion. The
scaled down area and perimeter are denoted by S′ and L′

respectively. In a square with area S′ and perimeter L′, i.e.,
S′ = S/[(1 + Δ)r]2 and L′ = L/(1 + Δ)r. The scaled down
Euclidean planar graph G′

R satisfies Lemma 1, the original
Euclidean planar graph GR satisfies Corollary 1.
Obviously, the maximum independent number is the maximum
number of concurrent transmission flows. We can derive the
following lemma according to Corollary 1.

Lemma 3: In the rectangular area with side length L, the
number of concurrent transmission flows M satisfies

1 ≤ M ≤ S√
3/2[(1 + Δ)r]2

+
L

2(1 + Δ)r
+ 1.

B. Bounds of Capacity

According to Lemma 3, we derive the upper bound of
throughput capacity using the protocol interference model.

Theorem 1 : For the social-proximity vehicular networks,
with the two-hop relay scheme, the average throughput λ(n)
cannot be better than

λ(n) ≤
S√

3/2[(1+Δ)r]2
+ L

2(1+Δ)r + 1

n
.

Proof 2: Gd(T ) denotes the total number of packets trans-
mitted through direct-transmission from source to destination
during the time interval [0, T ], Gr(T ) denotes the total number
of packets transmitted through relay-transmission during the
time interval [0, T ]. According to Definition 2, throughput
λ(n) satisfies:

Gd(T ) + Gr(T )
T

≥ nλ(n) − ε (1)

where ε > 0 is an arbitrary and fixed number, ε → 0
as T → ∞. K(T ) denotes the total transmit opportunities
during [0, T ]. The total number of transmitted packets must
be less than the total number of transmit opportunities during
a long time. Since the relay-transmission needs the transmit
opportunities twice to transmit one packet, we have

1
T

K(T ) ≥ 1
T

Gd(T ) +
2
T

Gr(T ). (2)

Substituting (1) into (2), we have

λ(n) ≤
1
T K(T ) + 1

T Gd(T )
2n

. (3)

When ε → 0 as T → ∞.
Due to the interference of wireless transmissions, the total

transmissions must be less than concurrent transmissions
during time [0, T ]. According to the law of large numbers,
we have

lim
x→T

1
T

K(T ) ≤ M. (4)

Similarly, we have

lim
x→T

1
T

Gd(T ) ≤ M. (5)

The two equalities hold when there exists always a transmis-
sion flow on each unit of a concurrent transmission group
during each time slot. According to lemma 3, substituting (4)
and (5) into (3), we have

λ(n) ≤ M

n
. (6)

Substituting M into (6), we get

λ(n) ≤
S√

3/2[(1+Δ)r]2
+ L

2(1+Δ)r + 1

n
.

Thus, the theorem then follows.
Remark : For a given urban region, the area S and perimeter
L are constant. Thus, from Theorem 1 we can infer that the
per-vehicle throughput O( 1

n ) is feasible. Due to the physical



size of vehicles and streets, the density of vehicles always
bounded by a positive number. Therefore, the number of
vehicles cannot increase endless. It will approach a constant
number. Before the number of vehicles reaches the constant
number, the capacity of VANET is scaled by the asymptotic
upper bound O( 1

n ) till the number of vehicles cannot increase.
We assume that an arbitrary urban has Nh home-point, and
vehicles choose its home-point i.i.d.. In order to calculate
the capacity lower bound, we will prove the following lemma
before we go into Theorem 2.

Lemma 4 : Let Ni denote the number of vehicles that
belong to the same sub-area. Ni at most scales as O(n) w.h.p.
(with high probability).

Proof 3: We use Borel’s law of large numbers (Lemma 2) to
prove the above lemma. It is easy to know that the probability
that a vehicle belongs to a specified sub-area is 1

Nh
. According

to Lemma 2, we have

lim
n→∞

{∣∣∣∣Ni

n
− 1

Nh

∣∣∣∣ < c

}
= 1

where c is a positive integer. Thus,

lim
n→∞

{
Ni < n

(
c +

1
Nh

)}
= 1.

Since c and Nh are constant numbers, the lemma follows.
According to the above Lemma, we know that at most O(n)
vehicles will belong to one specified sub-area. Thus, the
transmission opportunities will be shared by at most O(n)
vehicles. Therefore, one vehicle can obtain at least Ω( 1

n )
transmission opportunities in one time slot. Through the above
analysis, we derive the following theorem.

Theorem 2 : For the social-proximity vehicular networks,
the throughput capacity λ(n) can be bound by Θ( 1

n ) w.h.p..
Remark : The lower bound will be also a constant when

the number of vehicles cannot increase due to the physical
size. For the time being, the capacity of VANET is constant.

IV. DISCUSSION

The delay of VANETs is not considered in this paper. It
may be large. However, in a realistic scenario, the delay is
one of the most important properties. Therefore, the delay
and delay-capacity trade-off are needed to be discussed in our
planned future work. In addition, traffic is never a random
event. Although the restricted mobility model used in this
paper is more accurate than the random mobility model, it also
needs improvement. The capacity calculation in this paper is
derived with a pure ad hoc scenario. The infrastructure in a
city may improve the performance of VANETs remarkably.
Thus, the hybrid scenario of VANET is worth to be studied.
Since the interference model of this paper is simple, the use of
more complex interference model, such as a Gaussian Channel
Model, can make the results more accurate.

V. CONCLUSION

This paper analyzes the asymptotic capacity for social-
proximity urban vehicular networks. We proposed a new

framework abstracted from real world. The proposed frame-
work established with an Euclidean planar graph and an inter-
ference relationship graph. The Euclidean planar graph shows
the distribution of units, and the interference relationship graph
shows the interference relationship between each two units.
The independent set in graph theory is used to analyze the
interference relationship in interference relationship graph. We
showed that the constant capacity bounds could be achieved
at high density area and the asymptotic capacity in sparse area
is bounded by Θ(1/n). Our results indicate that the VANETs
are scalable to be deployed in urban environments.
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