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ABSTRACT
Content Centric Networking (CCN) is a content name-oriented ap-

proach to disseminate content to edge gateways/routers. In CCN, a

content is cached at routers for a certain time. When the associated

deadline is reached, the content is removed to cope with the lim-

ited size of content storage. If the content is popular, the previously

queried content can be reused for multiple times to save bandwidth

capacity. It is, therefore, critical to design an efficient replace-

ment policy to keep popular content as long as possible. Recently,

a novel caching strategy, named Most Popular Content (MPC),

was proposed for CCN. It considers the high skewness of content

popularity and outperforms existing default caching approaches in

CCN such as Least Recently Used (LRU) and Least Frequency

Used (LFU). However, MPC has some undesirable features, such

as slow convergence of hitting rate and unstable hitting rate per-

formance for various cache sizes. In this paper, a new caching

policy, dubbed Fine-Grained Popularity-based Caching (FGPC), is

proposed to overcome the above-mentioned weak points. Com-

pared to MPC, FGPC always caches coming content when stor-

age is available. Otherwise, it keeps only most popular content.

FGPC achieves higher hitting rate and faster convergence speed

than MPC. Based on FGPC, we further propose a Dynamic-FGPC

(D-FGPC) approach that regularly adjusts the content popularity

threshold. D-FGPC exhibits more stability in the hitting rate per-

formance in comparison to FGPC and that is for various cache sizes

and content sizes. The performance of both FGPC and D-FGPC

caching policies are evaluated using OPNET Modeler. The ob-
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tained simulation results show that FGPC and D-FGPC outperform

LRU, LFU, and MPC.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; D.2.8

[Software Engineering]: Metrics—complexity measures, perfor-
mance measures

Keywords
NDN;Future Internet;CCN;Caching Policy

1. INTRODUCTION
With the convergence of cloud computing, social media, and mo-

bile communications, the types of data traffic are becoming more

diverse and the community of Internet users is exponentially grow-

ing. Millions of multimedia files (e.g., pictures, voices and videos)

are generated and shared by producers and consumers. This trend

has posed high requirements on network bandwidth and data stor-

age, congesting networks and overloading servers.

In order to alleviate the problem of bandwidth scarcity, Content

Centric Networking (CCN) has been proposed to effectively dis-

tribute popular content to a potential number of users [1] [2]. To

maximize the probability of content sharing while ensuring mini-

mal upstream bandwidth demand and lowest downstream latency,

routers/gateways should cache exchanged content as long as possi-

ble. Caching decision and replacement policies play a crucial role

in CCN’s overall performance. The Least Recently Used (LRU)

and Least Frequently Used (LFU) replacement policies were origi-

nally proposed for CCN. However, LRU and LFU suffer from low

efficiency and that is due to the following reason: LRU and LFU

make replacement decision based on only existing content located

on the cache, i.e., LRU uses a time stamp of the content while LFU

counts delivery frequency of the content. It should be noted that the

name of content in CCN has the same form with the Uniform Re-

source Locator (URL), e.g., ccnx://root/prefix1/prefix2/../. In both
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schemes, content popularity is overlooked, which causes inaccu-

racy in identifying the popular level of a newly arriving content.

Thus, inadequate content replacement may happen: old popular

content may be replaced by new unpopular one.

In order to address the above limitation and improve the pre-

cision of content replacement decision, a novel caching strategy,

named Most Popular Content (MPC), was proposed in [3]. In MPC,

every router/gateway counts the local number of requests for each

content name, and stores the pair (content name; popularity count)

into a content popularity table. Once the popularity of a content

object reaches a predetermined threshold in a caching node, it is

tagged as a popular content and is stored in the cache. By storing

only popular content, MPC caches less content, saves resources and

reduces the number of cache operations, which makes it achieve a

higher hitting ratio in comparison to LRU and LFU.

Although some memory space is saved in MPC, the utilization

of the cache is typically not high. Based on our observation, higher

hitting rates can be achieved by intelligently utilizing vacant cache

memory to contribute to a certain amount of hitting ratio. For ex-

ample, when there is room in available memory, unpopular content

can be stored. When the cache becomes full, unpopular content

are removed, yielding space for popular ones. Furthermore, such

strategy of caching less content, adopted by MPC, results in a slow

convergence of MPC in terms of hitting rate performance.

As a remedy to the above limitations, we propose a novel re-

placement policy, dubbed Fine-Grained Popularity-based Caching

(FGPC). Similar in spirit to MPC, FGPC maintains a large table

to generate three kinds of statistic information, namely i) content

names, ii) popularity levels of content by counting the frequency of

appearances of a content name, and iii) time stamp of used content

located in a cache. In order to quickly achieve high hitting rate,

the cache always stores new coming content when it has available

memory. To avoid inadequate replacement decision, once the cache

is overflowed, FGPC checks the counting value of new content

names. If the counter reaches a predetermined popularity threshold

value, the new content will be stored using the LRU replacement

policy; otherwise the new content is simply deleted.

Compared with the existing LRU/LFU or MPC solutions, the

FGPC scheme has the following unique features:

• In FGPC, we carefully investigate the characteristics of

CCN where content name includes prefixes. Thus, the high

skewness of content popularity is the main reason to make

MPC/FGPC ourperform LRU. We add a content popular-

ity table to handle content name, content counter, and time

stamp.

• The way Internet users request content is fine tuned with

Pareto principle; that is 20% popular content are requested

by 80% number of users.

• Popular content always appear with a high probability and

vice versa. These common characteristics also indicate that

the FGPC algorithm is feasible, practical, and compliant with

the current Internet object access behavior.

Moreover, an enhanced version of FGPC, dubbed Dynamic

FGPC (D-FGPC), is proposed. Because the number of content

can be stored in a cache and the number of arrival requests to a

Table 1: Notation
Symbol Definition
F File size by default

FP Practical file size

α = FP

F The variety factor of F
|F | File number

|F |F Catalog size

Csize Cache size

CR
size =

Csize
|F |F ∗100% Relative cache size

gateway/router is changing dynamically over time, the popularity

threshold value should be adaptively adjusted on-the-fly over time,

too. For this reason, the enhanced version of FGPC is called D-

FGPC.

From the background of CCN [2], we import CCN strategy to

all network elements on top of IP layer in the OPNET simulator [4]

[5]. The existing LRU, MPC and our proposed FGPC and D-FGPC

policies are successfully constructed in CCN nodes. Our simulation

results prove that CCN is a good solution to existing challenges of

traditional IP networks. The results indicate that FGPC and D-

FGPC outperform LRU and MPC with highly effective caching.

For the sake of better readability, Table I lists up the notations

used in this paper. The remainder of this paper is organized as

follows. Section II provides some related research work. Section

III introduces the two proposed content replacement algorithms,

FGPC and D-FGPC. Section IV portrays the simulation setup and

discusses the simulation results. Finally, Section V concludes this

paper.

2. RELATED WORK
Recently, CCN has become a hot research area, and several

projects and prototypes have applied CCN [6]- [11]. CCN is a net-

work architecture, built on the Internet Protocol (IP) engineering

principle, but treats content as a primitive. Further details on the

CCN architecture can be found in [2].

Along with the overwhelming library of applications and ser-

vices, millions of content exist on the Internet nowadays; an im-

portant portion of it being “User Generated Content” (UGC) [12].

To understand the nature and impact of UGC systems, the work

conducted in [12] analyzes YouTube and Daum, the world’s largest

UGC Video on Demand (VoD) systems. The results show 10% of

the top YouTube popular videos account for nearly 80% of views,

while the rest 90% of the YouTube videos account for small number

of requests. Daum data also reveals a similar behavior. In fact, the

skewness in content popularity had been considered for a long time

ago [13] [14] [15]. At this moment, the robustness of data traffic

becomes critical and researches in ICT need to find out optimal so-

lutions such as in-network caching to offload data traffic [16] [17].

Similarly, data traces are collected from two UGC sites in China,

namely Youku and 6CN in [19]. The results indicate that top 5%

videos contribute to over 80% views, which demonstrate higher

skewness in video popularity in comparison to YouTube or Daum.

An interesting implication of this skewed distribution is that, by
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storing only 5% to 10% of long-term popular videos, a cache can

serve 80% of requests [18].

Edge caching is of vital importance for CCN. CCN becomes

highly efficient with intelligent caching at edge routers/gateways.

This efficiency degrades as caching occurs far from end-users [20].

However, global CCN caching, supported with Self-Organized Net-

working (SON) functions among caches can offer benefits well be-

yond only edge caching in sub-networks [21]. A variety of cache

sizes and popularity skewness are often considered to have a pos-

itive effect on the performance of different replacement policies.

In [22] and [23], the simulation results show that the overall net-

work performance improves in case of large cache sizes or high

skewness factors.

3. FGPC ALGORITHM
In MPC, the drawback of LRU is identified: the CCN default

caching (as known as LRU/LFU) strategy always stores content at

all nodes on the delivery path. This approach could replace popular

content by unpopular ones. MPC is proposed with a caching less

approach to solve the limitations of LRU/LFU. In the MPC, they

key idea is to cache only the most popular content and that is in

order to achieve high performance and save resources. However,

on the other hand, caching less strategy causes two other problems.

First, despite the fact that the probability appearance of unpopular

content is small, they still help to contribute to a certain amount

of hitting ratio. Moreover, in CCN standards, it is specified that to

maximize the content-sharing probability with minimal upstream

bandwidth demand and lower downstream latency, Content Stores

(CS) should keep arriving data packages (DataPks) as long as pos-

sible. Second, with cashing less strategy, hitting rate slowly con-

verges to a steady state. Hereunder, we introduce FGPC highlight-

ing how it copes with the issues of LRU, LFU and MPC. A new

variant of FGPC is portrayed afterwards.

3.1 FGPC strategy
In FGPC, each CCN node maintains a table containing statistics

about the popularity of a content name and that is in the form of

a content counter, along with a time stamp. Indeed, FGPC keeps

track of popular content by locally counting the frequency of ap-

pearances of each content name. As shown in Fig. 1, there are

three main operations conducted by FGPC:

• FGPC constantly updates three kinds of statistic information

in the popularity table, i.e., content name, content counter

and time stamp when receiving a content from upstream or

delivering a content downstream.

• FGPC always stores newly arriving content (regardless their

popularity) when CS has available space.

• When a CS is about to get full and a new content arrives,

FGPC compares the popularity level of the new content (PX )

to a predefined popularity threshold value (Pth).If Px exceeds

Pth, FGPC adopts the LRU policy to store the new content

into CS. Otherwise, FGPC ignores the content and does not

cache it.

In FGPC, CCN nodes achieve effective caching when they rec-

ognize the popularity levels of all content and keep popular con-

tent for longer times than other less popular content items. The
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Figure 1: FGPC and D-FGPC flowchart.

trade-offs between performance and space availability as well as

with computational complexity should be taken into account. In

order to significantly reduce the overhead of the popularity table,

algorithms such as the message-digest (MD5) Hash algorithm or

mapping content names to digital numbers could be effective. For

instance, to keep one million content names, and given the fact that

a MD5 Hash value uses 16Bytes (i.e., 1B for counter and 3B for

time stamp [3]), a CCN node would need an additional memory of

merely 20 ∗ 106B or 19.0735MB for the popularity table. Nowa-

days, there is a clear technical trend that network devices are pro-

vided powerful packet processing and large memory. This makes

no extra cost impact to the provider or to the users for in-network

caching with FGPC approach.

3.2 D-FGPC strategy
In the basic FGPC scheme, the popularity threshold (Pth) is

fixed for filtering popular content. Admittedly, this is not real-

istic as in real-life implementations, the popularity of a content
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changes with time. In addition, the number of arriving interest

packages (ninterest ), the practical file sizes (FP) as well as avail-

able cache sizes (Csize) of different routers/gateways dynamically

change. In this section, we define D-FGPC, as a new variant of

FGPC with dynamic Pth adjustment. For the sake of better illus-

tration, Fig.1 shows the main operations of both the FGPC and D-

FGPC schemes. Hereunder, we discuss the relationship between

the parameters Pth, ninterest , FP and Csize as follows:

• Given a fixed FP, when Csize increases, available memory

of CS increases too. Then, Pth must decrease to relax the

popularity-based content filtering and help fill up the avail-

able memory of CS as soon as possible. For this reason,

D-FGPC fully utilizes the cache and converges faster than

FGPC in case of large Csize.

• Given a fixed Csize, when FP increases, the number of prac-

tical files stored on CS decreases. Then, Pth must increase to

improve the popular content filtering. It should be noted that

content in the memory are constructed by a lot of chunk files,

and users normally request for completed content which in-

clude a group of chunk files together.

• Given a fixed Csize, when ninterest increases, the number of

newly coming content will also increase. In order to effi-

ciently use the limited cache size and to accommodate the

largest number of content requests, Pth must set up to higher

values to enhance the popular content filtering.

Similarly, we have reverse situations and operations when Csize,

FP and ninterest decrease, respectively. As above discussion about

the relationship between the parameters Pth, ninterest , FP and Csize,

a dynamic setting of the popularity threshold can be achieved us-

ing Eq.1, whereby β is a constant that reflects the content filtering

factor.

Pth = β ∗ ninterest ∗FP

Csize
(1)

In the MPC and FGPC schemes, Pth is fixed at five [3]. In case

of D-FGPC scheme, β should make the threshold value around five

for a fair comparison with the MPC/FGPC performance. For exam-

ple, when we set FP and Csize to constant default values, e.g., the

middle values in the range, ninterest can be estimated every minutes,

then β is determined when Pth is set at five. With the calculated β ,

when either FP or Csize varies, Pth will vary around five too.

4. SIMULATION AND RESULTS

4.1 Network architecture
To evaluate the performance of FGPC and D-FGPC, we imple-

mented CCN and conducted simulations using the OPNET Mod-

eler 16.0 [4] [5]. In the simulations, CCN is overlayed over the

IP layer. Indeed, we integrated the CCN processing modules into

all network elements, such as routers, PCs, servers and IP Cloud.

Fig.2 shows the envisioned OPNET model for CCN node processor

which is integrated into routers.

With every intention to consider a typical Internet network topol-

ogy, we envision the network topology as shown in Fig.3. Almost
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application

rsvp

ip

rip

CPUdhcp

mac

hub_rx_0_0 hub_tx_0_0

CCN_process Application

Layer

Transport

Layer

Internet

Layer

Link Layer

PIT

FIB

Cache

Figure 2: Procesor model of a simulated CCN node.
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Edge Router_2

Edge Router_3

Aggregation 

Router

Edge Router_4

Video Server

CCN Processor_2

CCN Processor_3

IP CORE

Switch

PC

Figure 3: Envisioned network architecture.

all networks are built with three layers, i.e. i) the core layer pro-

vides optimal transport between core routers and distribution sites,

ii) the distribution layer provides policy-based connectivity, peer

reduction and aggregation, and iii) the access layer provides com-

mon group access to the internetworking environment. The simu-

lated network includes three clusters of end users, distributed over

a wide area network (WAN). Each cluster has an edge router, a

CCN processor node, a switch and 25 PCs. All PCs request video

content from a video server following a Pareto distribution: 20

PCs (80% traffic) request popular video content while the remain-

ing five PCs (20% traffic) request unpopular video items. Videos

are streamed from the video server through an IP core and then

via aggregation routers, edge routers and finally received by CCN

processors. After executing underlying video caching/replacement

policies, CCN processors supply requesting PCs with requested

video content when available at CCN nodes. In this paper, we ap-

ply FGPC and D-FGPC to edge routers to achieve the benefits of

CCN [20] [21].
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Table 2: Simulation parameters.
Element Attribute Value

Link between routers OC-24 data rate

WAN Link for server 1000 BaseX

Link for PCs 100 BaseT

CCN root ccnx://hust.edu.cn/epic/video/

Publish root’s name interval 100 seconds

Number of video files (|F |) 500000 files

Server A video size by default (F) 1 MB

Practical video size (FP) 0.5/ 1/ 1.5/ 2/ 2.5/ 3 MB

The variety factor of F (α) 0.5/ 1/ 1.5/ 2/ 2.5/ 3

Packet size 1024 bits

CCN directory root/prefix1/.../prefix5

File based popularity Pareto principle

PCs Start time 100 + random(10) seconds

Stop time 20000 seconds

IntPk inter-arrival time 5 + random(2) seconds

DataPk time-out 2 seconds

Relative cache size (CR
size) 0.05/ 0.1/ 0.15/ 0.2/ 0.25/ 0.3%

Replacement policy LRU/ MPC/ FGPC/ D-FGPC

CCN node The popularity threshold (Pth) 5 (in case of MPC/FGPC)

Hitting rate results sampling rate 0.1 Hz

The performance evaluation is conducted considering the impact

of two metrics on the hitting rate; they are namely the relative cache

size (CR
size) and the factor of default file size (α) [22] [23]. The

hitting rate for the three simulated edge routers is calculated as the

ratio of the number of Interest packages (IntPks) satisfied at edge

routers to the total number of IntPks from all PCs. Table II lists

the values of important parameters considered in the simulations.

These values were selected to reflect real-world implementations

of in-network caching and that is considering prior research work

[3] [22] [24] [25]. The simulations were run multiple times and the

presented results are an average of these runs.

4.2 Simulation results
We first evaluate the performance of the different content

caching/replacement policies for different cache sizes. The sim-

ulation duration is set to 20000 seconds. In the simulations, all PCs

start sending IntPks from the 100th second. In Fig.4, the hitting

rate results are obtained for each 1000 seconds.

In Fig.4, the relative cache size (CR
size) at CCN node is increased

by 0.05%, 0.1%, 0.15%, 0.2%, 0.25% and 0.3%. It should be noted

that in the simulations, the catalog size is large (500000 files) while

the cache size is small (equal to or less than 1500 files). For this

reason, the relative cache size is equal to or less than 0.3%. In

Fig.4, the obtained simulation results show that high hitting rates

can be achieved for high cache sizes and that is for all simulated

policies. From the figure, it becomes apparent that this increase

in the hitting rate is not linear to increase in the cache volume.

The figure also indicates that when the relative cache size is equal

to 0.25%, the cache can handle most requests for popular content.

However, increasing the relative cache size to 0.3% degrades the

performance gain. There is thus a tradeoff between cache volume

(cost) and performance and there is consequently need to retrieve a

suitable cache size.

Fig.4 also shows that in case of LRU, the hitting rate quickly in-

creases when the cache becomes full. When the cache becomes

overflowed, drawbacks of LRU happen and the hitting rate de-

creases gradually. This performance is mainly attributable to the

intrinsic nature of LRU whereby caches store every new content.

In contrast to LRU, MPC caches less and requires time to col-

lect information about the popularity of content. Thus, we notice

a slow increase of the hitting rate in case of MPC till it reaches a

steady state. Incorporating the nice features of both LRU and MPC,

the proposed FGPC scheme always stores new content when CCN

nodes have available space. This explains the quick increase of

FGPC’s hitting rate. When the cache becomes overflowed, FGPC

behaves similar to MPC and requires time to collect enough infor-

mation about the popularity level of content. This feature results in

a temporal decrease of the hitting rate (for a short time) before it

continues increasing to the final state. Given the dynamic setting

of the popularity threshold in D-FGPC, its hitting rate tends to be

more stable, in comparison to FGPC, and that is during the entire

simulation time as well as for several relative cache sizes.

Fig.5 compares among the performances of the four schemes

when the relative cache size is set to 0.1%. The figure shows that D-

FGPC outperforms all the other schemes, followed by FGPC, MPC

and LRU, respectively. The figure also shows that LRU reaches

higher cache hit ratio than others in the beginning of the simula-

tions (i.e., until 6400s). The performance of LRU then degrades

while other schemes achieve higher hitting rates. This is mainly

due to the fact that D-FGPC, FGPC and MPC need time to assess

the popularity of content before they start caching popular content.

Fig.6 further compares among the four schemes for different rel-

ative cache sizes. D-FGPC and FGPC exhibit always higher hitting
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Figure 4: Performance of D-FGPC, FGPC, MPC and LRU for varying relative cache sizes.

rates in comparison to the conventional MPC and LRU schemes

and that is in all situations. Furthermore, the figure reveals two

important observations. First, when the relative cache size reaches

0.3%, the MPC performance quickly degrades and its hitting rate

is just slightly higher than LRU. Second, with a dynamic threshold

popularity value, the performance of D-FGPC is independent from

the cache sizes. For example, when the relative cache size is small

(e.g., 0.05%), the value of the popularity threshold is not optimal,

making FGPC perform poorly in comparison to MPC. On the other

hand, D-FGPC maintains always the highest hitting rate.

Fig.7 illustrates the effect of the factor of the default file size

(α) on the hitting rate of the four simulated schemes and that is

for a fixed relative cache size (0.15%). In this scheme, FP is set

to 0.5/1/1.5/2/2.5/3 MB in turn at the beginning of the simulation.

It should be noted that despite the fact FP may vary in real-life,

we do not capture this in the envisioned simulations and that is for

the sake of simplicity. D-FGPC exhibits the best performance, fol-

lowed by FGPC, MPC and LRU, respectively. From the figure, it

becomes clear that for a small file size (e.g., α= 0.5), the cache

stores higher numbers of content. This trivially yields higher hit-

ting rates. Furthermore, another reason is related to the number of

arriving IntPks from all PCs. Indeed, in case of a stable data trans-

mission rate, CCN nodes may take shorter times to satisfy requests

for small-size files than in case of requests for large files.

5. CONCLUSION
In this paper, we introduced two variants of a new cache deci-

sion and replacement policy for CCN that takes into account con-

tent popularity. The performance of the proposed policy was eval-
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uated using computer simulations. The obtained results demon-

strated the good performance of the proposed policy in achieving

higher hitting rates and that is under different working conditions

(e.g., cache size and file size). The performance of the proposed

policy is expected to be largely improved with an efficient co-

operation/contextual information (e.g., content popularity) sharing

among neighboring CCN nodes to achieve self-organized network-

ing of the CCN nodes and their caching. This defines one of the

authors’ future research directions with regard to CCN.
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